

p-ISSN: 1978-8789, e-ISSN: 2714-7649 http://jurnal.polinema.ac.id/index.php/distilat DOI: https://doi.org/10.33795/distilat.v10i4.6325

STUDI LITERATUR PENGARUH BERBAGAI KOAGULAN TERHADAP PENGOLAHAN LIMBAH CAIR TAHU

Adinda Resti Ariefianti, Maura Krisan Hayu Rexita, Arief Budiono Jurusan Teknik Kimia, Politeknik Negeri malang, Jl. Soekarno Hatta No. 9, Malang 65141, Indonesia restiadinda3@gmail.com; [arief.budiono@polinema.ac.id]

ABSTRAK

Limbah cair tahu memiliki kadar polutan di atas baku mutu yang telah ditetapkan oleh Menteri Lingkungan Hidup Republik Indonesia sehingga menyebabkan pencemaran air, padahal air bersih merupakan sumber daya alam yang sangat dibutuhkan dalam kehidupan manusia. Studi literatur ini bertujuan untuk mengetahui pengaruh berbagai jenis, dosis dan kecepatan pengadukan koagulan kimia dan alami beserta efektivitasnya untuk menurunkan kadar polutan dalam limbah cair tahu. Fokus pada studi literatur ini yaitu pengolahan limbah cair tahu menggunakan metode *jar test* dengan proses koagulasi flokulasi. Variabel bebas yaitu jenis dan dosis koagulan serta kecepatan pengadukan, dan variabel terikat adalah nilai COD, nilai BOD, dan kadar *Total Suspended Solid*. Jenis koagulan kimia yang dianalisis yaitu PAC, tawas, dan ferri klorida. Koagulan alami yang dianalisis yaitu koagulan-flokulan yang berasal dari biji kelor (4- Alfa-4--rhamnosyloxy-benzyl-isothiocyanate), biji asam jawa (tanin), kitosan (gugus amino) dan biji trembesi (tanin). Semua koagulan tersebut dapat menurunkan kadar polutan, namun koagulan terbaik yang dapat menurunkan ketiga parameter polutan, sesuai dengan standar yang ditentukan oleh pemerintah dan mempunyai ketersediaan yang banyaj serta dapat diperoleh dengan harga yang relatif murah adalah koagulan biji kelor dimana dengan dosis 2000 mg/L koagulan ini dapat menurunkan COD hingga 91%, BOD 91,67% dan TSS 86%.

Kata kunci: flokulasi, jar test, koagulan, limbah cair tahu.

ABSTRACT

Tofu liquid waste has pollutant levels above the quality standard stipulated by the Minister of Environment of the Republic Indonesia. Causing water pollution, even though currently clean water is natural resource that is very much needed in human life. This literature study aims to determine the effect of varaiou types and doses of chemical and natural coagulants and their effectiveness in reducing pollutant levels in tofu wastewater. The focus of this literature study is the treatment of tofu wastewater using jar test method in coagulation and flocculation process. The independent variabels are the type and doses of coagulan also the speed of stirring and the dependent variabels are levels of COD, levels of BOD, and levels of Total Suspended Solid. Types of chemical coagulants analyzed were PAC, alum, and ferric chloride. The natural coagulants derived from moringa (4-Alfa-4-rhamnosyloxy-benzyl-isothiocyanate), tamarind seeds (tannin), corn flour (carboxyl, hydroxyl and amide groups), chitosan (amino group) and samanea saman (tannin). All of these coagulants can reduce pollutant levels, but the best coagulant that can reduce the three pollutant parameters, meet the standards set by the government and have a lot of availability also can be obtained at a relatively cheap price is moringa's seed coagulant which with a dose of 2000 mg/L of this coagulant can reduce COD up to 91%, BOD 91,67% dan TSS 86%.

Keywords: flocculation, jar test, coagulant, tofu wastewater.

1. PENDAHULUAN

Industri tahu yang saat ini telah menjadi industri yang tersebar luas di Indonesia dan

Corresponding author: Arief Budiono Jurusan Teknik Kimia, Politeknik Negeri Malang Jl. Soekarno-Hatta No. 9, Malang 65141, Indonesia

E-mail: arief.budiono@polinema.ac.id

banyak dari industri ini limbahnya tidak dikelola dengan benar atau bahkan tidak dikelola sama sekali, padahal kadar COD, BOD, dan TSS di dalam air limbah industri tahu cukup tinggi, mempunyai keasaman yang rendah, serta padatan tersuspensi atau padatan terlarut tinggi [1]. Protein yang ada di dalam limbah cair tahu juga akan mengalami pembusukan, sehingga menimbulkan bau yang tidak sedap.

Salah satu metode yang dapat digunkan untuk menangani limbah cair tahu adalah koagulasi-flokulasi, cara ini juga dianggap menjadi salah satu cara yang cukup murah dan aman [2]. Prinsip dari koagulasi yaitu di dalam air baku terdapat partikel-partikel padatan yang sebagian besar bermuatan listrik negatif, partikel ini akan cenderung tolak-menolak satu sama lainnya, sehingga dapat dilakukan netralisasi muatan negatif partikel-partikelnya dengan penambahan koagulan bermuatan positif sehingga partikel dapat di kumpulkan.

Terdapat berbagai bahan koagulan yang dapat digunakan baik koagulan kimia seperti PAC, tawas, dan ferri klorida maupun bio-koagulan yang bersifat lebih ramah lingkungan contohnya seperti biji asam jawa, biji kelor, biji trembesi dan kitosan. Namun, koagulan potensial dari beberapa koagulan yang telah diteliti masih belum dapat disimpulkan, karena penelitian dilakukan terpisah. Diperlukan review artikel penelitian untuk dapat menyimpulkan koagulan terbaik untuk menurunkan kadar polutan COD, BOD dan TSS yang ada di dalam limbah cair tahu.

2. METODOLOGI PENELITIAN

Tabel 1 Referensi jurnal

Penulis	Koagulan	Tahun	Referensi
Murwanto	PAC	2018	[2]
Sabilina et al	PAC	2018	[3]
Sabarudin et al	Tawas	2020	[4]
Pinem	Tawas	2013	[5]
Satyanaran	FeCl₃ dan tawas	2012	[6]
Umah et al	FeCl₃	2018	[7]
Setyawati	Kelor dan tawas	2018	[8]
Sari	Biji kelor	2018	[9]
Setyawati	Biji kelor	2019	[10]
Ulwia dan Soumena	Biji asam jawa	2017	[11]
Saputroh et al	Biji asam jawa	2020	[12]
Irawan et al	Biji asam jawa	2013	[13]
Bija et al	Kitosan	2020	[14]
Pangestika	Kitosan	2018	[15]
Putri	Biji trembesi	2020	[16]

Teknik pengumpulan data pada karya ilmiah ini dilakukan secara deskriptif kualitatif dengan menggunakan beberapa sumber yaitu dari penelitian-penelitian sebelumnya. Sumber penelitian didapatkan dengan mengumpulkan jurnal prosiding internasional maupun jurnal nasional yang sudah terakreditasi sebagai referensi untuk mengetahui efek dari beberapa variasi berdasarkan situasi yang benar-benar terjadi. Penelitian dimulai dari ide studi dari beberapa referensi yang telah didapatkan sebelumnya, lalu dilanjutkan dengan perumusan

masalah, penyusunan tinjauan pustaka dan pengumpulan data. Tahap terakhir dilakukan dengan menganalisis dan membandingkan data berdasarkan referensi jurnal, sehingga didapatkan penyelesaian masalah dari rumusan masalah.

Studi literatur ini dilakukan dengan membandingkan koagulan untuk mengurangi polutan COD, BOD, TSS dalam limbah cair tahu berdasar penelitian yang telah dilakukan pada Tabel 1.

3. HASIL DAN PEMBAHASAN

3.1 Pengaruh koagulan terhadap COD limbah tahu

COD dari limbah cair tahu yang diperbolehkan untuk dibuang ke lingkungan berdasarkan persyaratan peraturan Menteri Lingkungan Hidup Republik Indonesia Nomor 5 Tahun 2014 tentang baku mutu air limbah bagi usaha kegiatan pengolahan kedelai adalah maksimal 300 mg/L.

Koagulan	Dosis (mg/L)	%Penurunan Kadar COD	COD akhir (mg/L)	Referensi
	20	50	426	
PAC	25	78,7	181	[3]
	30	78,7	181	
A	600	33	52,235	
Asam jawa	700	34	50,915	[11]
jawa	800	48	40,470	

Tabel 2. Kadar awal limbah cair tahu dengan kadar COD < 1000 mg/L

Pada Tabel 2 kadar COD awal sampel limbah cair tahu kurang dari 1000 mg/L dapat dilihat bahwa koagulan PAC dengan dosis 20-30 mg/L sudah mampu memberikan hasil yang sangat baik dan prosentase penurunan yang lebih besar mencapai 78,7% jika dibandingkan dengan koagulan asam jawa yang memerlukan dosis 26 kali lipat lebih banyak dibandingkan koagulan PAC untuk mencapai prosentase terbesarnya yaitu 48 %. Secara keseluruhan koagulan PAC dan asam jawa masing-masing efektif dan dapat menurunkan kadar COD dengan prosentase 33 % - 78,7% nilai COD akhir untuk kedua koagulan sebagian besar sesuai dengan SNI.

Pada Tabel 3 kadar COD awal sampel limbah cair yang bernilai 1000 mg/L – 2500 mg/L dapat dilihat bahwa koagulan tawas dengan dosis 50 mg/L dan 2000 mg/L mampu menurunkan kadar COD dengan prosentase 64% dan 85,42%. Hasil yang baik juga terlihat pada pemberian koagulan biji kelor dengan dosis 2000 mg/L dan prosentase penurunan kadar COD akhir hingga 91% [8], dengan perbandingan dosis dan kadar COD awal yang sama, maka koagulan biji kelor lebih efektif untuk menurunkan kadar COD pada limbah cair tahu pada percobaan tersebut dibandingkan dengan koagulan tawas, namun kadar COD akhir pada kedua koagulan tetap dapat memenuhi SNI. Pada percobaan pemberian koagulan biji trembesi pada kondisi COD awal dengan nilai tersebut menunjukkan hasil yang cukup baik, hasil paling baik diperoleh dengan pemberian dosis sebanyak 200 mg/L yang menurunkan kadar COD sebesar 80% dan mampu menurunkan hingga sesuai dengan SNI. Secara keseluruhan, dilihat dari keefektifannya maka biji kelor menjadi koagulan yang

paling efektif dengan dosis 2000 mg/L, namun dosis tersebut terbilang cukup banyak jika dibandingkan dengan pemberian dosis koagulan lain seperti biji trembesi yang memerlukan dosis lebih sedikit (200 mg/L) namun efektifitasnya hampir sama dan memenuhi SNI. Oleh karena itu untuk menentukan koagulan yang paling efektif namun juga efisien untuk kadar COD awal 1000 mg/L – 2500 mg/L akan dibahas pada bagian harga dan ketersediaannya di Indonesia.

Tabel 3 Kadar awal COD limbah cair tahu 1000 mg/L – 2500 mg/L

Koagulan	Dosis (mg/L)	%Penurunan Kadar COD	COD akhir (mg/L)	Referensi
Tawas	50	64	1059	[5]
Tawas	2000	85,42	168	[8]
Biji kelor	2000	91	96	[0]
	50	26	755	
Diii trombosi	100	42	592	[16]
Biji trembesi	150	64	367	[16]
	200	80	204	

Pada Tabel 4 kadar COD awal sampel limbah cair yang bernilai 3000 mg/L – 6000 mg/L dapat dilihat bahwa koagulan yang digunakan dalam percobaan tersebut belum bisa membuat kadar COD sampel memenuhi baku mutu/SNI yang berlaku. Hal ini karena kadar COD dalam limbah yang digunakan sudah tidak bisa diolah hanya menggunakan dosis yang berada di dalam literatur. Namun pengolahan dengan proses koagulasi dan flokulasi dengan dosis dan jenis koagulan yang berbeda yang tepat dengan kondisi yang ada berpeluang sangat besar untuk dapat menurunkan kadar COD sampai sesuai dengan SNI. Beberapa literatur lain juga memberikan alternatif pengolahan limbah cair tahu sebagai referensi, seperti misalnya penyaringan terlebih dahulu sebelum proses koagulasi-flokulasi, melakukan metode menggunakan lucutan plasma, ataupun penambahan flokulan lain seperti polimer anionik untuk membantu menurunkan kadar COD lebih banyak.

Melihat dan menganalisa pada Tabel 4, keseluruhan koagulan mampu menurunkan kadar COD pada limbah tersebut. Namun, koagulan yang paling efektif dalam menangani limbah cair tahu dengan nilai COD awal 3000 mg/L - 6000 mg/L menurut hasil studi pada beberapa literatur tersebut adalah ferri klorida. Dengan dosis mulai dari 70 mg/L - 170 mg/L mampu menurunkan prosentase penurunan COD diatas 70%. Diikuti oleh koagulan alami biji asam jawa yang mampu menurunkan kadar COD hingga 83% namun dengan dosis koagulan yang lebih banyak yaitu 4500.

Pada Tabel 5 kadar COD awal sampel limbah cair yang bernilai > 7000 mg/L dapat dilihat bahwa koagulan yang digunakan dalam percobaan tersebut belum bisa membuat kadar COD sampel memenuhi baku mutu/SNI yang berlaku, bahkan prosentase penurunan yang ada tidak sampai 40%. Sama seperti kadar awal COD sebelumnya, hal ini karena kadar COD dalam limbah yang digunakan sudah tidak bisa diolah hanya menggunakan metode koagulasi-flokulasi biasa. Pada bagian ini, koagulan yang paling efektif menurut studi literatur yang dilakukan adalah PAC dengan dosis 300 mg/L dan prosentase penurunan 37%.

Tabel 4 Kadar awal COD limbah cair tahu 3000 mg/L – 6000 mg/L

Koagulan	Dosis (mg/L)	%Penurunan Kadar COD	COD akhir (mg/L)	Referensi
	50	22	3320	
	100	25	3200	
	150	26	3140	
Tawas	200	27	3100	
Tawas	250	29	3020	
	300	34	2830	
	350	35	2790	
	400	35	2750	[6]
	50	60	1707	
	100	62	1630	
	150	64	1552	
FeCl₃	200	65	1474	
rec ₁₃	250	69	1320	
	300	71	1240	
	350	71	1236	
	400	71	1234	
	70	70	1482,5	
	90	74	1289,75	
FeCl₃	110	79	1017	[7]
1 6013	130	84	765,75	
	150	88	561,75	
	170	90	463,25	
Biji Kelor	3000	70	1062	[17]
	4500	83	1016	
Biji Asam	9000	80	1196	[12]
Jawa	13500	78	1315	[+4]
	18000	44	3349	
	22500	11	5323	

Tabel 5. Kadar awal COD limbah cair tahu > 7000 mg/L

Koagulan	Dosis (mg/L)	%Penurunan Kadar COD	COD akhir (mg/L)	Referensi
	75	26	6600	
PAC	150	28	6400	[2]
PAC	225	33	6000	
	300	37	5600	
	10	13	6090	
Kitosan	20	25	5250	[14]
	30	-2	7140	
Kitosan	10	16,8	6465	[15]

3.2 Pengaruh koagulan terhadap BOD limbah tahu

BOD dari limbah cair tahu yang diperbolehkan untuk dibuang ke lingkungan berdasarkan persyaratan peraturan Menteri Lingkungan Hidup Republik Indonesia Nomor 5 Tahun 2014 tentang baku mutu air limbah bagi usaha dan/atau kegiatan pengolahan kedelai adalah maksimal 150 mg/L.

Tabel 6. Kadar BOD limbah cair tahu < 650 mg/L

Koagulan	Dosis	% penurunan kadar	BOD akhir	Referensi
Koagulali	(mg/L)	BOD	(mg/L)	Referensi
	20	50	234	
PAC	25	81	86,9	[3]
	30	81	86,9	
	600	33	29	
Biji asam jawa	700	34	26	[11]
	800	48	21	
	10	-35	168	
Kitosan	20	94	7,5	[14]
	30	-40	175	
	50	29	434	
Biji trembesi	100	55	275	[16]
Diji di cilibesi	150	72	177	[10]
	200	87	79	

Pada Tabel 6 kadar BOD awal sampel limbah cair yang bernilai <650 mg/L dapat dilihat bahwa koagulan yang digunakan dalam percobaan ada beberapa kadar koagulan yang dapat memenuhi baku mutu/SNI yang berlaku. Berdasarkan data pada literatur, PAC dan biji trembesi dapat dipertimbangkan sebagai koagulan yang paling efektif untuk kadar BOD di bawah. Meskipun prosentase penurunan kadar BOD pada koagulan kitosan paling besar yaitu 94 %, namun menurut penulis data tersebut belum cukup valid dikarenakan dua variabel lainnya justru menunjukkan penyimpangan.

Pada Tabel 7 kadar BOD awal sampel limbah cair yang bernilai > 1000 mg/L dapat dilihat bahwa koagulan yang digunakan dalam percobaan sebagian besar belum bisa membuat kadar BOD sampel memenuhi baku mutu/SNI yang berlaku. Koagulan biji kelor lebih efektif (91,6%) untuk menurunkan kadar BOD pada limbah cair tahu dibandingkan dengan koagulan tawas (90%), namun kadar BOD akhir pada kedua koagulan tetap dapat memenuhi SNI.

Pada Tabel 8 kadar BOD awal sampel limbah cair yang bernilai > 8000 mg/L, literatur yang kami temukan adalah menggunakan koagulan PAC. Kinerja koagulan mesti sudah cukup baik karena dapat menurunkan kadar COD sebesar 72 % tetapi belum bisa membuat kadar BOD sampel memenuhi baku mutu / SNI yang berlaku.

Tabel 7. Kadar BOD limbah cair tahu > 1000 mg/L

Koagulan	Dosis (mg/L)	%Penurunan Kadar BOD	BOD akhir (mg/L)	Referensi
Tawas	50	64	455	[5]
Tawas	2000	90	120	[8]
	50	5	1384	
	100	28	1340	
	150	30	1302	
Tawas	200	31	1280	
Tawas	250	33	1246	
	300	38	1154	
	350	38	1142	
	400	40	1116	[6]
	50	62	698	[6]
	100	64	658	
	150	65	640	
FeCl₃	200	68	590	
FEC13	250	72	510	
	300	73	500	
	350	73	490	
	400	74	486	
Biji kelor	2000	91,67	100	[10]

Tabel 8. Kadar BOD limbah cair tahu > 8000 mg/L

Koagulan	Dosis (mg/L)	%Penurunan Kadar BOD	BOD akhir (mg/L)	Referensi
	75	58	3600	
PAC	150	65	3000	[2]
PAC	225	67	2800	[2]
	300	72	2400	

3.3 Pengaruh koagulan terhadap TSS limbah tahu

TSS dari limbah cair tahu yang diperbolehkan untuk dibuang ke lingkungan berdasarkan persyaratan peraturan Menteri Lingkungan Hidup Republik Indonesia Nomor 5 Tahun 2014 tentang baku mutu air limbah bagi usaha dan/atau kegiatan pengolahan kedelai adalah maksimal 100 mg/L.

Pada Tabel 9 kadar TSS awal sampel limbah cair tahu kurang dari 1000 mg/L dapat dilihat bahwa koagulan tawas, biji kelor, biji trembesi, dan kitosan mampu menurunkan kadar TSS pada limbah cair tahu. Menurut penelitian yang dilakukan oleh Setyawati (2018) dengan perbandingan dosis dan kadar BOD awal yang sama, maka koagulan biji kelor lebih efektif (86%) untuk menurunkan kadar BOD pada limbah cair tahu pada percobaan tersebut dibandingkan dengan koagulan tawas (79%) nilai TSS akhir yang sesuai dengan SNI hanya biji kelor dosis 2000 mg/L dan biji trembesi dosis 200 mg/L.

Tabel 9. Kadar awal TSS limbah cair tahu < 1000 mg/L

Koagulan	Dosis (mg/L)	%Penurunan Kadar TSS	TSS akhir (mg/L)	Referensi
Tawas	300	84	140	[4]
Tawas	2000	79	150	[8]
Biji kelor	2000	86	98	[10]
	50	38	327	
Dili tuanah asi	100	51	259	[16]
Biji trembesi	150	77	121	[16]
	200	83	90	
Kitosan	10	74,4	215,54	[15]
	50	45	875	
	100	48	828	
	150	52	773	
T	200	54	731	[6]
Tawas	250	58	675	[6]
	300	61	619	
	350	63	598	
	400	64	582	

Tabel 10. Kadar awal TSS limbah cair tahu > 2000 mg/L

Koagulan	Dosis (mg/L)	%Penurunan Kadar TSS	TSS akhir (mg/L)	Referensi
Tawas	50	96	88	[5]
	50	45	875	
	100	48	828	
	150	52	773	
Tawas	200	54	731	
Tawas	250	58	675	
	300	61	619	
	350	63	598	
	400	64	582	[6]
	50	87	210	رما
	100	89	178	
	150	90	155	
FeCl₃	200	92	128	
reci3	250	93	100	
	300	94	94	
	350	94	90	
	400	95	86	
	300	29	2116,8	
Biji asam jawa	400	51	1468,4	
	500	47	1516	[13]
javva	600	54	1401,6	
	700	52	1395,2	

Pada Tabel 10 kadar TSS awal sampel limbah cair yang bernilai > 2000 mg/L dapat dilihat bahwa dari sebagian besar koagulan yang digunakan dalam percobaan belum bisa membuat kadar TSS sampel memenuhi baku mutu/SNI yang berlaku dan hanya koagulan tawas dan FeCl₃ yang dapat menurunkan kadar TSS sesuai dengan ketentuan, oleh karena itu kedua koagulan tersebut dapat menjadi pertimbangan menjadi koagulan efektif dalam range TSS di bawah.

Pada Tabel 11 kadar TSS awal sampel limbah cair yang bernilai > 7000 mg/L , literatur yang kami temukan adalah menggunakan koagulan PAC. Kinerja koagulan sudah cukup baik karena dapat menurunkan kadar COD sebesar 86 % tetapi belum bisa membuat kadar BOD sampel memenuhi baku mutu / SNI yang berlaku.

%Penurunan Kadar TSS TSS akhir (mg/L) Koagulan Dosis (mg/L) Referensi 75 72 2000 150 77 1600 PAC [2] 225 80 1400 300 86 1000

Tabel 11. Kadar awal TSS limbah cair tahu > 7000 mg/L

Dengan data pada Tabel 12 tersebut dapat dilihat bahwa penurunan polutan paling efektif adalah pemberian koagulan PAC dengan dosis 30 mg/L-300 mg/L efektif menurunkan limbah cair tahu dengan kadar awal COD < 100 mg/L , kadar awal COD > 6000 mg/L , kadar awal BOD > 8000 mg/L , dan kadar awal TSS > 7000 mg/L dan bio koagulan biji kelor dengan dosis 2000 mg/L efektif untuk menurunkan kadar polutan dengan kadar awal COD < 1000 mg/L - 2500 mg/L , kemudian kadar awal BOD > 1000, dan kadar awal TSS < 1000 mg/L.

Tabel 12. Keefektifan jenis koagulan dan dosis untuk menurunkan kadar COD, BOD, dan TSS pada limbah cair tahu

Koagulan	Efektif untuk kadar awal	Dosis (mg/L)
PAC	Kadar awal COD < 1000 mg / L Kadar awal COD > 6000 mg/L Kadar awal BOD > 8000 mg/L Kadar awal TSS > 7000 mg/L	300
FeCl₃	Kadar awal COD 3000 mg - 6000 mg/L	170
Tawas	Kadar awal TSS > 2000 mg/L	50
Biji kelor	Kadar awal TSS < 1000 mg/L Kadar awal BOD > 1000 mg/L Kadar awal COD < 1000 - 2500 mg / L	2000

Biji asam jawa	Kadar awal COD <1000 mg/L Kadar awal COD 3000-6000 mg/L Kadar awal BOD <650 mg/L Kadar awal TSS >2000 mg/L	1016-1401,6
Kitosan	Kadar awal COD>7000 mg/L Kadar BOD awal<650 mg/L Kadar TSS awal<1000 mg/L	7,5
Biji trembesi	Kadar COD awal 1000 mg/L – 2500 mg/L Kadar BOD awal < 650 mg/L Kadar TSS awal < 1000 mg/L	200

3.4 Pengaruh kecepatan pengadukan terhadap %penurunan kadar polutan

Kecepatan pengadukan berpengaruh pada meningkatnya kontak partikel koagulan dengan limbah cair dan membentuk flok yang dapat mengendap. Fungsi dari pengadukan cepat sendiri untuk menambah luas permukaan kontak antara partikel tersuspensi dengan ion koagulan agar tercampur dengan sempurna, sedangkan pengadukan lambat berfungsi untuk mengikat flok-flok sehingga menjadi lebih besar dan mengendap lebih mudah.

Berdasar tingkat keefektifan penurunan kadar polutan, dibutuhkan koagulan PAC sebanyak 300 mg/L, tawas 50 mg/L, dan ferri klorida 170 mg/L. Apabila per koagulan dibandingkan harganya dengan keefektifannya dalam menurunkan kadar polutan maka PAC dengan harga 4,2 rupiah per 300 mg/L nya, ferri klorida dengan harga 4,25 rupiah per 250 mg/L dan tawas dengan harga 0,35 rupiah per 50 mg/L. Koagulan PAC dan tawas dapat ditemukan dengan mudah di Indonesia, 2 produk ini dapat ditemukan di toko-toko bangunan dan toko lainnya yang dapat diakses secara online, untuk koagulan ferri klorida sendiri belum banyak produksinya di Indonesia dan harganya juga tergolong lebih mahal daripada koagulan anorganik lainnya. Jika dibandingkan dari segi harga, dosis dan ketersediaan, koagulan tawas adalah yang paling efektif untuk digunakan menurunkan kadar polutan hingga mencapai ketentuan pemerintah.

Sedangkan untuk koagulan alami berdasar tingkat keefektifan penurunan kadar polutan, maka dibutuhkan masing-masing 100 rupiah untuk 2000 mg/L biji kelor, 24,4 rupiah per 1016 mg/L biji asam jawa, 0,91 rupiah per 7,5 mg/L kitosan dan 10 rupiah per 200 mg/L biji trembesi. Semua koagulan alami ini bisa didapatkan dengan mudah di Indonesia yang merupakan wilayah tropis dimana tumbuhan kelor, asam jawa dan trembesi tumbuh dengan mudah di wilayah ini dan kitosan bisa didapatkan dari proses ekstraksi limbah perikanan yang berupa cangkang-cangkangan.

Berdasarkan harga, dosis dan ketersediaan, koagulan kitosan lebih efektif dalam segi harga yang terbilang terjangkau dan bisa didapat di mana saja. Penambahan koagulan kitosan juga tidak memerlukan proses yang rumit.

Tabel 13. Keefektifan jenis koagulan dan kecepatan pengadukan yang paling efektif menurunkan kadar COD, BOD, dan TSS pada limbah cair tahu

Koagulan	Dosis (mg/L)	Kecepatan Pengadukan (rpm)		Presentase Penuruan kadar polutan (%)			Referensi
		Koagulasi	Flokulasi	COD	BOD	TSS	
Tawas	300	120	40	-	-	84	[4]
	300	100	40	34	38	61	[6]
FeCl₃	150	100	40	64	65	90	[6]
	150	120	20	88	-	-	[7]
Biji asam	600	120	40	33	19	-	[11]
jawa	600	100	60	-	-	54	[13]

Tabel 14. Perbandingan efektifitas dalam segi harga dan ketersediaan

Koagulan	Harga/kg	Ketersediaan
PAC	Rp. 14.000,00-Rp. 27.000,00	Beberapa pabrik beroprasi menghasilkan PAC
Tawas	Rp. 7000 - Rp. 10.000	Banyak pabrik penghasil tawas
Ferri klorida	Rp. 25.000,00-Rp. 188.000,00	Saat ini untuk pembelian ferri klorida jarang ditemukan pabrik yang memproduksi ferri klorida.
Biji kelor	Rp. 50.000,00-Rp.80.000, 00	Melimpah di Indonesia yang merupakan wilayah tropis, dapat ditemukan di mana saja
Biji asam jawa	Rp. 24.000,00-Rp. 26.000	Ketersediaan melimpah terutama pada daerah Jawa Barat, Jawa Tengah, Jawa Timur termasuk Madura, Sumatra Utara, Kalimantan Barat, Bali dan Sulawesi Selatan
Kitosan	Rp. 121.346,00 - Rp. 130.000,00	Sumber dari kitosan sangat melimpah di Indonesia karena produksi ikan juga melimpah
Biji trembesi	Rp. 80.000,00	Mudah ditemukan pada daerah tropis

4. KESIMPULAN DAN SARAN

Dari keseluruhan literasi yang telah dibahas di atas, dapat disimpulkan bahwa koagulan paling efektif untuk menurunkan kadar polutan dari sisi kadar dan harga koagulan adalah koagulan sintetis tawas kadar 50 mg/L dengan harga 0,35 rupiah per 50 mg/L dan koagulan alami kitosan dosis 7,5 mg/L dengan harga 0,91 rupiah per 7,5 mg/L.

Disarankan pada penelitian selanjutnya untuk membahas tentang pengaruh pH, waktu untuk pengadukan cepat dan lambat, waktu sedimentasi, pengaruh koagulan terhadap TDS dan turbiditas pada limbah cair tahu serta mempertimbangkan pengaruh koagulan anorganik dan organik terhadap lingkungan dan kesehatan juga pengaruh ukuran koagulan dalam menyerap limbah cair tahu.

REFERENSI

[1] D. A. Wati, "Keefektifan Penambahan Koagulan Biji Asam Jawa (Tamarindus indica) untuk Menurunkan Kadar Total Suspended Solid (TSS) pada Limbah Cair Tahu," *Jurnal Publikasi Ilmiah*, hal. 1–13, 2014.

- [2] B. Murwanto, "Efektivitas Jenis Koagulan Poly Aluminium Chloride Menurut Variasi Dosis dan Waktu Pengadukan terhadap Penurunan Parameter Limbah Cair Industri Tahu," *Jurnal Kesehatan*, vol. 9, no. 1, hal. 143, 2018.
- [3] P. E. Sabilina, A. Setiawan, dan A. E. Afiuddin, "Studi Penggunaan Dosis Koagulan PAC (Poly Aluminium Chloride) dan Flokulan Polymer Anionic pada Pengolahan Limbah Cair Industri Tahu," *Jurnal Prosiding Elektronik PPNS, Conference Proceeding on Waste Treatment Technology*, vol. 1, no. 1, hal. 183–188, 2018.
- [4] B. T. Sabarudin dan S. Kartohardjono, "The Combination of Coagulation-Flocculation and Membrane Processes to Minimize Pollution of Tofu Wastewater," *Evergreen Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy*, vol. 7, no. 1, hal. 56–60, 2020.
- [5] J. A. Pinem, J. A., dan Sorang, "Penyisihan BOD, COD dan TSS Limbah Cair Tahu dengan Kombinasi Koagulasi-Flokulasi dan Ultrafiltrasi," *Jurnal Ilmiah Sains Terapan*, hal. 5–8, 2012.
- [6] S. Satyanarayan, A. P. Venerkar, dan Ramakant, "Organic Removals from Highly Proteinous Wastewater from Soya Milk and Tofu Manufacturing Plant," *Journal of Environmental Science and Health Part A Toxic/Hazardous Substances and Environmental Engineering*, vol. 39, no. 3, hal. 759–771, 2004.
- [7] N. R. Umah, T. Joko, dan H. L. Dangiran, "Efektivitas Dosis Ferri Klorida (Fecl3) dalam Menurunkan Kadar Chemical Oxygen Demand (COD) pada Limbah Pabrik Tahu di Tempelsari Kalikajar Wonosobo," *Jurnal Kesehatan Masyarakat*, vol. 6, no. 6, hal. 279–288, 2018.
- [8] H. Setyawati, S. S. LA, dan S. Andjar Sari, "Penerapan Penggunaan Serbuk Biji Kelor sebagai Koagulan pada Proses Koagulasi Flokulasi Limbah Cair Pabrik Tahu di Sentra Industri Tahu Kota Malang," *Industri Inovatif : Jurnal Teknik Industri*, vol. 8, no. 1, hal. 21–31, 2019.
- [9] M. Sari, "Optimalisasi Daya Koagulasi Serbuk Biji Kelor (Moringa Oleifera) pada Limbah Cair Industri Tahu," *AGRITEPA: Jurnal Ilmu dan Teknologi Pertanian*, vol. 4, no. 2, hal. 25–37, 2018.
- [10] H. Setyawati, M. Asroni, dan L. S. Wulandari, "Efektifitas Biji Kelor sebagai Koagulan pada Peningkatan Mutu Limbah Cair Pabrik Tahu," *Jurnal Teknik Kimia*, vol. 12, no. 2, 2018.
- [11] R. S. Ulwia., "Pengaruh Dosis Koagulan Serbuk Biji Asam Jawa (Tamarindus Indica L.) terhadap Penurunan Kadar BOD dan COD pada Limbah Cair Industri," *Global Health Science*, vol. 2, no. 2, hal. 325–331, 2017.
- [12] A. S. A. Saputroh, M. V. Priscilla, dan T. Susilowati, "Kajian Efektivitas Bioflokulan Pati Biji Asam Jawa terhadap Penurunan Kadar COD Limbah Cair Tahu," *Journal of Chemical and Process Engineering*, vol. 01, no. 01, hal. 22–28, 2020.
- [13] H. Irawan, Rochmawati, dan Asmadi, "Efektivitas Penambahan Serbuk Biji Asam Jawa (Tamarindus Indica) dalam Menurunkan TSS pada Limbah Cair Tahu di Kecamatan Pontianak Utara," *Jurnal Mahasiswa dan Peneliti Kesehatan*, vol. 23, hal. 67–75, 2013.
- [14] S. Bija, Y. Yulma, I. Imra, A. Aldian, A. Maulana, dan A. Rozi, "Sintesis Biokoagulan Berbasis Kitosan Limbah Sisik Ikan Bandeng dan Aplikasinya Terhadap Nilai BOD dan COD Limbah Tahu di Kota Tarakan," *Jurnal Pengolahan Hasil Perikanan Indonesia*, vol.

- 23, no. 1, hal. 86–92, 2020.
- [15] W. Pangestika dan N. Saksono, "A Tofu Wastewater Treatment Using Combination of Plasma Electrolysis and Coagulation-Flocculation Method," *International Journal of Technology and Engineering Studies*, vol. 4, no. 2, hal. 42–49, 2018.
- [16] I. R. Eri, O. P. W, dan M. Marlik, "Pemanfaatan Ekstrak Biji Trembesi (Samanea Saman) sebagai Koagulan dalam Menurunkan Konsentrasi Padatan Tersuspensi, dan Zat Organik Limbah Cair Tahu," *Jurnal Envirotek*, vol. 12, no. 2, hal. 38–43, 2020.
- [17] R. Putra, B. Lebu, M. H. D. D. Munthe, dan A. M. Rambe, "Pemanfaatan Biji Kelor sebagai Koagulan pada Proses Koagulasi Limbah Cair Industri Tahu dengan Menggunakan Jar Test," *Jurnal Teknik Kimia USU*, vol. 2, no. 2, hal. 28–31, 2013.