REVIEW: PENGARUH KONSENTRASI LARUTAN KITOSAN SEBAGAI COATING AGENT TERHADAP DAYA SERAP AIR PADA BIOPLASTIK DARI PATI SINGKONG DAN GLUTEN
DOI:
https://doi.org/10.33795/distilat.v6i2.136Keywords:
Bioplastik, Pati Singkong, Gluten, Kitosan, Coating AgentAbstract
Bioplastik merupakan jenis plastik dibuat dengan bahan berasal dari tanaman. Plastik ini dapat diuraikan oleh mikroorganisme atau jamur secara alami. Bioplastik dapat tersusun dari pati, lignin, selulosa, atau dari hasil samping perkembangbiakan mikroorganisme. Bioplastik memiliki kelemahan dalam hal ketahanan air daya tahan penyerapan air dan sifat mekanik. Kelemahan tersebut dapat diatasi dengan menambahkan kitosan sebagai bahan tambahan dari penyerapan air dan gluten untuk memperbaiki sifat mekanik bioplastik. Studi penelitian ini digunakan sebagai mendapatkan cara jenis bioplastik baru dengan pendekatan secara teori pada penelitian pembuatan bioplastik sebelumnya. Studi dilakukan pada penelitian bahan bioplastik dari pati singkong, gluten, dan kitosan. Karateristik bioplastik meliputi tensile strenght dan water uptake. Hasil studi didapatkan karakteristik bioplastik gluten memiliki water uptake yang lebih rendah dengan nilai 38-65%. Karakteristik kuat tarik memiliki nilai yang tinggi pada bioplastik pati kentang-kitosan sebesar 53 MPa sedangkan bioplastik pati singkong dengan coating kitosan layer by layer didapatkan kuat tarik sebesar 14,47 ± 1,25 MPa.
References
Ahmed, T., Shahid, M., Azeem, F., Rasul, I., Shah, A. A. , Noman, M., Hameed, A., Manzoor, N., Manzoor, I., and Muhammad, S., 2018, Biodegradation of Plastics: Current Scenario and Future Prospects for Environmental Safety, Environmental Science and Pollution Research, Vol. 25, 7287–7298.
Avérous, L., 2004, Biodegradable Multiphase Systems Based on Plasticized Starch: A Review, Journal of Macromolecular Science - Polymer Reviews, Vol.44, No. 3, 231–274.
Aripin, S., Saing, B., and Kustiyah, E., 2017, Studi Pembuatan Bahan Alternatif Plastik Biodegredable dari Pati Ubi Jalar dengan Plasticizer Gliserol dengan Metode Melt Intercalation, Jurnal Teknik Mesin Mercu Buana, Vol. 6, No. 2, 79–84.
Ban, W., Song, J., Argyropoulos, D. S., and Lucia, L. A., 2006, Influence Of Natural Biomaterials on The Elastic Properties of Starch-Derived Films: An Optimization Study, Industrial and Engineering Chemistry Research, Vol.45, No. 2, 627–633.
Gonzalez-Gutierrez, J., Partal, P., Garcia-Morales, M., and Gallegos, C., 2010, Development of Highly-Transparent Protein/Starch-Based Bioplastics, Bioresource Technology, Vol.101, No. 6, 2007–2013.
Ansorena, M. R., Marcovich, N. E., and Pereda, M., 2019, Food Biopackaging Based on Chitosan,Vol.3, In: Martínez L., Kharissova O., Kharisov B. (eds) Handbook of Ecomaterials, Springer International Publishing, 2057–2083.
Rasheed, F., 2011, Production of Sustainable Bioplastic Materials from Wheat Gluten Proteins, Horticulture and Agricultural Science, Vol.3, No. 1, 1–52.
Luchese, C. L., Spada, J. C., and Tessaro, I. C., 2017, Starch Content Affects Physicochemical Properties of Corn and Cassava Starch-Based Films, Vol.109, 619–626.
Maulida , Siagian, M., and Tarigan, P., 2016, Production of Starch Based Bioplastic from Cassava Peel Reinforced with Microcrystalline Celllulose Avicel PH101 Using Sorbitol as Plasticizer, Journal of Physics: Conference Series, Vol.710, No. 1
Oluwasina, O. O., Olaleye, F. K., Olusegun, S. J., Oluwasina, O. O., and Mohallem, N. D. S. , 2019, Influence of Oxidized Starch on Physicomechanical, Thermal Properties, and Atomic Force Micrographs of Cassava Starch Bioplastic Film, International Journal of Biological Macromolecules, Vol.135, 282–293.
Souza, A. C., Benze, R., Ferrão, E. S., Ditchfield, C., Coelho, A. C. V., and Tadini, C. C., 2012, Cassava Starch Biodegradable Films: Influence of Glycerol and Clay Nanoparticles Content on Tensile and Barrier Properties and Glass Transition Temperature, LWT - Food Science and Technology, Vol.46, No.1, 110–117.
Silva, O. A., Pellá, M. G., Pellá, M. G., Caetano, J., Simões, M. R., Bittencourt, P. R. S., and Dragunski, D. C., 2019, Synthesis and Characterization of A Low Solubility Edible Film Based on Native Cassava Starch, International Journal of Biological Macromolecules, Vol.128, 290–296.
Jiménez-Rosado, M., Zarate-Ramírez, L. S., Romero, A., Bengoechea, C., Partal, P., and Guerrero, A., 2019, Bioplastics Based on Wheat Gluten Processed by Extrusion, Journal of Cleaner Production, Vol.239
Zárate-ramírez, L. S., Romero, A., Bengoechea, C., Partal, P., and Guerrero, A., 2014, Thermo-Mechanical and Hydrophilic Properties of Polysaccharide / Gluten-Based Bioplastics, Carbohydrate Polymers, Vol.112, 24–31.
Ansorena, M. R., Zubeldía, F., and Marcovich, N. E., 2016, Active Wheat Gluten Films Obtained by Thermoplastic Processing, LWT - Food Science and Technology, Vol.69, 47– 54.
Akter, N., Khan, R. A., Tuhin, M. O., Haque, M. E., Nurnabi, M., Parvin, F., and Islam, R., 2014, Thermomechanical, Barrier, and Morphological Properties of Chitosan-Reinforced Starch-Based Biodegradable Composite Films, Journal of Thermoplastic Composite Materials, Vol.27, No. 7, 933–948.
S. Bhuvaneshwari, D.Sruthi, Sivasubramanian, V., and Niranjana kalyani and J. Sugunabai, 2011, Development and Characterization of Chitosan Film, International Journal of Engineering Research and Applications, Vol.1, No.2, 292–299.
Wahyuni, E. S. and Arifan, F., 2018, Optimization of Chitosan Drying Temperature on The Quality and Quantity of Edible Film, E3S Web of Conferences, Vol.31, 1–5.
ASTM International, 2016, Standard Practice for Preparation of Metallographic Specimens (D638), ASTM International, Vol.82, No. C, 1–15.
Borges, J. A., Romani, V. P., Cortez-Vega, W. R., and Martins, V. G., 2015, Influence of Different Starch Sources and Plasticizers on Properties of Biodegradable Films, International Food Research Journal, Vol.22, No. 6, 2346–2351.
Yang, L. and Paulson, A. T., 2000, Effects of Lipids on Mechanical and Moisture Barrier Properties of Edible Gellan Film, Food Research International, Vol.33, No. 7, 571–578.
Bourtoom, T., 2008, Plasticizer Effect on The Properties of Biodegradable Blend from Rice Starch-Chitosan, Songklanakarin Journal of Science and Technology, Vol.30, 149–155.
Kaewtatip, K., Tanrattanakul, V., and Kaewtathip, T., 2013, Preparation and Characterization of Thermoplastic Starch/Wheat Gluten Composites, Key Engineering Materials, Vol.531–532, 321–324.
Shimazu, A. A., Mali, S., and Grossmann, M. V. E., 2007, Efeitos Plastificante E Antiplastificante Do Glicerol E Do Sorbitol Em Filmes Biodegradáveis De Amido De Mandioca, Semina: Ciências Agrárias, Vol.28, 79-88.
Zárate-Ramírez, L. S., Romero, A., Martínez, I., Bengoechea, C., Partal, P., and Guerrero, A., 2014, Effect of Aldehydes on Thermomechanical Properties of Gluten-Based Bioplastics, Food and Bioproducts Processing, Vol.92, No. 1, 20–29.
Clark, R. B. and Averbach, B. L., 1978, The Mechanical Properties of Chitosan Membranes, OCEANS: The Ocean Challenge 1978, 82–86.
Fajar, N., Altway, S., Johar, L., Ayu, D., and Rosita, D., 2015, The Effect of The Addition of Glycerol and Chitosan in The BiodegradablePlastics Production from “Porang” Flour (Amorphophallus Muelleri Blueme), Proceedings of The 9th Joint Conference on Chemistry, 312–316.
Chillo, S., Flores, S., Mastromatteo, M., Conte, A., Gerschenson, L., and Nobile, M. A. Del , 2008, Influence of Glycerol and Chitosan on Tapioca Starch-Based Edible Film Properties, Journal of Food Engineering, Vol.88, No. 2, 159–168.
Bangyekan, C., Aht-Ong, D., and Srikulkit, K., 2006, Preparation and Properties Evaluation of Chitosan-Coated Cassava Starch Films, Carbohydrate Polymers, Vol.63, No. 1, 61–71.
Zárate-Ramírez, L. S., Martínez, I., Romero, A., Partal, P., and Guerrero, A., 2011, Wheat Gluten-Based Materials Plasticised with Glycerol and Water by Thermoplastic Mixing and Thermomoulding, Journal of the Science of Food and Agriculture, Vol.91, No. 4, 625– 633.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.