Implementation of Deep Learning in Automatic Enemy Object Shooting to Assist in Securing Military Guard Posts

Authors

  • Putfui Ari Dewi Politeknik Negeri Malang
  • Hadiwiyatno Hadiwiyatno Politeknik Negeri Malang
  • Waluyo Waluyo Politeknik Negeri Malang
  • Amalia Eka Rakhmania

DOI:

https://doi.org/10.33795/jartel.v15i3.6911

Keywords:

Automatic Shooting, Deep Learning, Faster R-CNN, Guard Post Security System, Weapon Guidance

Abstract

Military guard posts play a crucial role in securing strategic areas, particularly in high-risk regions that frequently face armed threats. However, limited infrastructure and equipment often reduce security effectiveness. This study aims to develop an automated security system using deep learning technology for enemy detection and automatic shooting responses. The system employs Faster R-CNN algorithm for object recognition and classification, integrated with a Logitech C920 camera for image capture, Raspberry Pi 4 Model B for data processing, and Arduino Nano to control servo motors for weapon movement and firing. Testing results demonstrate that the system effectively distinguishes between friend and enemy objects based on clothing attributes under various lighting conditions. The servo motor achieves 87.25 percent accuracy for horizontal movement, 88.89 percent for vertical movement, and 88.87 percent shooting accuracy with an average response time of 1.011 seconds. Detection probability reaches 85.11 percent under bright conditions and decreases to 65.24 percent in dark environments. The system successfully detects enemies up to 36 meters distance. This automated system enhances guard post security and reduces risks for military personnel.

References

Natasha Ancely, “Kekuatan Militer Indonesia Berada di Peringkat ke 13 dari 145 Negara.” Accessed: Jun. 02, 2024. [Online]. Available: https://www.kompas.tv/video/474913/kekuatan-militer-indonesia-berada-di-peringkat-ke-13-dari-145-negara

A. Ahdiat, “Belanja Militer Indonesia Meningkat, tapi Rasionya Tak Sampai 1% PDB,” Databoks.Katadata.Co.Id.

R. Wardi, “2016, TNI AD Segera Bentuk Dua Kodam Baru,” BERITASATU.COM. Accessed: May 04, 2024. [Online]. Available: https://www.beritasatu.com/news/336091/2016-tni-ad-segera-bentuk-dua-kodam-baru

N. Katingka, “KKB Serang Pos TNI di Papua Barat Daya, Satu Prajurit Gugur,” Harian Kompas. Accessed: Apr. 02, 2024. [Online]. Available: https://www.kompas.id/baca/nusantara/2023/12/26/kkb-serang-markas-tni-di-papua-barat-daya-satu-prajurit-gugur

F. M. L. Costa, “Takut Terdampak Serangan KKB, Ratusan Warga Nduga Mengungsi,” Harian Kompas. Accessed: Apr. 02, 2024. [Online]. Available: https://www.kompas.id/baca/nusantara/2023/06/01/takut-serangan-kkb-ratusan-warga-nduga-diungsikan-ke-ibu-kota-nduga

Rahman, “Mencekam! Pos TNI di Distrik Aroba Papua Barat Diberondong Tembakan OTK,” SINDONEWS.COM. Accessed: Apr. 02, 2024. [Online]. Available: https://daerah.sindonews.com/read/1208119/174/mencekam-pos-tni-di-distrik-aroba-papua-barat-diberondong-tembakan-otk-1695398979

R. Latumahina, “KKB Serang Pos TNI di Puncak Papua Tengah: 1 Prajurit dan 3 Teroris Luka,” detikNews. Accessed: Apr. 02, 2024. [Online]. Available: https://news.detik.com/berita/d-6879075/kkb-serang-pos-tni-di-puncak-papua-tengah-1-prajurit-dan-3-teroris-luka

D. M. Nirmala Maulana Achmad, “TNI AD Akan Perbaiki Pos-pos Prajurit di Papua , KSAD Maruli : Pakai Terpal , Mau Jualan Bakso ? Ironi Denis Murib , Pilih Apa Itu Desertir TNI , Papua Adalah Eks Praju … Pengkhianatan Denis.” Accessed: Jun. 18, 2024. [Online]. Available: https://nasional.kompas.com/read/2024/02/29/18331341/tni-ad-akan-perbaiki-pos-pos-prajurit-di-papua-ksad-maruli-pakai-terpal-mau

S. M. Rezkia, “Apa Itu Machine Learning? Kenali Perbedaan Machine Learning dan Deep Learning,” pp. 1–10, 2020, [Online]. Available: https://www.dqlab.id/pahami-machine-learning-untuk-hadapi-industri-data-sebenarnya

S. Sabila, P. dani Prasetyo adi, S. Subairi, and M. Baidlowi, “Sistem Otomatis Penggerak Lesan Tembak Untuk Latihan Teknik Tempur Cepat Dengan Metode PID,” JASIEK (Jurnal Apl. Sains, Informasi, Elektron. dan Komputer), vol. 3, no. 2, pp. 63–70, 2021, doi: 10.26905/jasiek.v3i2.8373.

E. N. Ufuk Asıl, “Using Image Processing Techniques to Increase Safety in Shooting Ranges,” Int. J. Comput. Sci. Enginering an Appl., vol. 11, pp. 1–6, 2021, doi: 10.5121/ijcsea.2021.11103.

C. Simatupang, M. Anwar, R. Budi, P. Angkatan, and D. Pushubad, “Rancang Bangun Sistem Tracking Pada Sentry Gun Sebagai Pengganti Pos Dengar Gun As a Replacement of Hearing Posts Based on,” vol. 3, pp. 84–92, 2022.

A. Zani, “Smart Shooter System pada Robot Tank dengan Realtime Target Recognition and Tracking Berbasis Raspberry Pi,” J. Telkommil, pp. 1–8, 2020, [Online]. Available: https://journal.poltekad.ac.id/index.php/kom/article/view/45

A. Raharjo, E. Kuncoro, and I. Azhar, “Rancang Bangun Tracking Arah Tembakan Menggunakan Sensor Posisi Berbasis Pid,” TELKA - Telekomun. Elektron. Komputasi dan Kontrol, vol. 7, no. 1, pp. 43–48, 2021, doi: 10.15575/telka.v7n1.43-48.

S. Muharom and B. Prasetyo, “Automatics Detect and Shooter Robot Based on Object Detection Using Camera,” Prz. Elektrotechniczny, vol. 1, no. 1, pp. 50–54, 2021, doi: 10.15199/48.2022.01.07.

B. Harijanto, A. Muzakki, M. Syafaat, and A. Militer, “Implementasi Pengenalan Musuh Melalui Loreng TNI dan Helm Protap Berbasis Image Processing Pada Robot Penjaga Bersenjata Otomatis SS2,” J. Elkasista, vol. 5, 2023.

C. Grigoraș, S.-M. Petrișor, C.-T. Codreanu, and E.-M. Borboană, “Examples of Good Educational Practices on the Modernization of Shooting Sessions through the Experimental Construction of a Functional Model of a Shooting Range and of a Mobile Target Device Operated by Radio Waves,” Sci. Bull., vol. 27, no. 2, pp. 112–122, 2022, doi: 10.2478/bsaft-2022-0013.

Downloads

Published

30-09-2025

How to Cite

Dewi, P. A., Hadiwiyatno, H., Waluyo, W., & Rakhmania, A. E. (2025). Implementation of Deep Learning in Automatic Enemy Object Shooting to Assist in Securing Military Guard Posts. JURNAL JARTEL: Jurnal Jaringan Telekomunikasi, 15(3), 359–367. https://doi.org/10.33795/jartel.v15i3.6911