Classification of Real and Fake News Using the Artificial Neural Network Method
DOI:
https://doi.org/10.33795/jartel.v15i2.7422Keywords:
Artificial Neural Network (ANN), Classification, Digital Literacy, Digital Platforms, Fake News, News VerificationAbstract
The rapid spread of fake news through digital platforms poses a significant challenge in the current era, as misinformation can quickly influence public perception and disrupt social stability. This research focuses on the development and implementation of an Artificial Neural Network (ANN) model to classify news articles as either real or fake. The study utilizes news data collected from the past year, which is processed through several stages including data preprocessing, feature extraction, model training, and evaluation. The ANN model is designed to recognize complex patterns in news text, enabling it to distinguish between authentic and fabricated information with high accuracy. Experimental results indicate that the proposed ANN approach achieves an accuracy rate of 98% in classifying news articles. The findings also reveal annual fluctuations in the distribution of fake and real news, with a notable decline in fake news observed in 2025, which may reflect increased public awareness and improved verification practices. The study highlights the ongoing risks posed by digital misinformation and underscores the importance of integrating ANN-based solutions into information systems to enhance digital literacy and support more reliable news dissemination. This contribution is expected to assist stakeholders in mitigating the negative impacts of fake news and fostering a more trustworthy digital information environment.
References
C. Anggraini, I. P. Sari, I. A. Lubis, M. A. Junjungan, and S. Suhana, “Peran Teknologi Informasi Dalam Mendukung Perkembangan Bisnis Digital Di Kelurahan Sidorejo Hilir JURNAL MEDIA INFORMATIKA [ JUMIN ],” J. Media Inform., vol. 6, no. 2, pp. 1244–1249, 2025.
R. A. Setyawan, Z. Abidin, and R. W. Widyanto, “Leveraging Deep Learning Vision for Real- Time Monitoring and Counting of Online Motorcycle Taxi Traffic,” in Proceedings - 2024 12th Electrical Power, Electronics, Communications, Controls and Informatics Seminar, EECCIS 2024, Institute of Electrical and Electronics Engineers Inc., 2024, pp. 226–230. doi: 10.1109/EECCIS62037.2024.10839795.
D. E. Prayitno, “Analisis Penyebaran Berita Hoax Melalui Media Sosial TikTok,” ULIL ALBAB J. Ilm. Multidisiplin, vol. 3, no. 8, pp. 30–37, 2024.
M. aditya Prasetio, N. Nurhasanah, and ..., “Pentingnya Sosialisasi Pencegahan Penyebaran Berita Hoax di Masyarakat Patumbak 1,” J. Pengabdi. …, vol. 4, no. 3, pp. 2954–2958, 2023, [Online]. Available: http://ejournal.sisfokomtek.org/index.php/jpkm/article/view/1676%0Ahttp://ejournal.sisfokomtek.org/index.php/jpkm/article/download/1676/1160
N. Agung Prasetyo, Q. Putri Riyadi, F. Bunga Fandila, A. Febytha Maruti, and N. Nadia, “Dampak Buruk Kecanduan Penggunaan Media Sosial di Era 5.0 pada Kesehatan Mental dan Interaksi Sosial,” Perspektif, vol. 3, no. 2, pp. 94–101, 2024.
A. R. I. Fauzy and Erwin Budi Setiawan, “Detecting Fake News on Social Media Combined with the CNN Methods,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 7, pp. 271–277, Mar. 2023, doi: 10.29207/resti.v7i2.4889.
S. Pitrianti, E. A. M. Sampetoding, A. A. Purba, and Y. S. Pongtambing, “Literasi Digital pada Masyarakat Desa,” Pros. Semin. Nas. Teknol. dan Sist. Inf., vol. 3, pp. 43–49, Nov. 2023, doi: 10.33005/sitasi.v3i1.655.
A. Sarjito, “Hoaks , Disinformasi , dan Ketahanan Nasional : Ancaman Teknologi Informasi dalam Masyarakat Digital Indonesia,” pp. 175–186, 2024.
H. Budi and M. Rika, “Dampak Perkembangan Teknologi Informasi dan Komunikasi terhadap Perilaku dan Kesehatan Remaja,” J. Pengabdi. Masy. Cendikia Jenius, vol. 1, pp. 24–35, 2023.
D. Hartono, “Fenomena Kesadaran Bela Negara di Era Digital dalam Perspektif Ketahanan Nasional,” J. Kaji. Lemhannas RI, vol. 8, no. 1, p. 19, 2020.
C. Juditha and J. J. Darmawan, “Komunikasi Politik Terkait Hoaks pada Pemilu Presiden Indonesia 2024 Political Communication Related To Hoaxes In The 2024,” J. Stud. Komun. dan Media, vol. 28, no. 2, pp. 167–182, 2024, doi: 10.17933/jskm.2024.5682.
Indra, Agus Umar Hamdani, Suci Setiawati, Zena Dwi Mentari, and Mauridhy Hery Purnomo, “Comparison of K-NN, SVM, and Random Forest Algorithm for Detecting Hoax on Indonesian Election 2024,” J. Nas. Pendidik. Tek. Inform., vol. 13, Mar. 2024, doi: 10.23887/janapati.v13i1.76079.
M. R. Maulana R, Y. Wibisono, and H. Siregar, “Penerapan Metode LSTM dalam Pembuatan Sistem Pendeteksi Berita Palsu Berbahasa Indonesia,” Syntax J. Inform., vol. 12, pp. 43–51, Nov. 2023, doi: 10.35706/syji.v12i02.9924.
S. Singhania, N. Fernandez, and S. Rao, “3HAN: A Deep Neural Network for Fake News Detection,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Springer Verlag, 2023, pp. 572–581. doi: 10.1007/978-3-319-70096-0_59.
R. N. F. Fitri et al., Tantangan Jurnalistik di Era Digital. 2021.
M. Rohmani, “Pelanggaran Prinsip Kesantunan dalam Judul Berita Politik Pilkada pada Media Cetak dalam Perspektif Pragmatik,” J. Sastra Indones., vol. 12, no. 1, pp. 22–30, 2023, doi: 10.15294/jsi.v12i1.67417.
R. Aulia and M. Srg, “Peran Media Digital dalam Meningkatkan Keterlibatan dan Partisipasi Publik : Transformasi Komunikasi di Era Informasi dan Sosial,” J. Sains Student Res., vol. 2, no. 6, pp. 506–513, 2024, doi: https://doi.org/10.61722/jssr.v2i6.3008.
T. S. Camelia, F. R. Fahim, and M. M. Anwar, “A Regularized LSTM Method for Detecting Fake News Articles,” Nov. 2024, doi: 10.1109/SPICSCON64195.2024.10941441.
A. Laeliyah, I. Much Ibnu Subroto, and S. Farisa Chaerul Haviana, “Klasifikasi Kepakaran Reviewer Menggunakan Jaringan Syaraf Tiruan (Artificial Neural Network),” J. Transistor Elektro dan Inform. (TRANSISTOR EI), vol. 5, no. 1, p. 2023, 2023.
H. Amanda, N. Faiza, and L. S. Harahap, “Implementasi Multilayer Perceptron untuk Klasifikasi Berita Hoax dalam Media Sosial,” J. Multidiscip. Inq. Sci. Technol. Educ. Res., vol. 2, no. 1, 2025.
A. Sarjito, “Hoaks , Disinformasi , dan Ketahanan Nasional : Ancaman Teknologi Informasi dalam Masyarakat Digital Indonesia,” pp. 175–186, 2024.
S. Vosoughi, R. Deb, and S. Aral, “False News is Big News,” MIT Initiat. Digit. Econ. Res. Br., vol. 359, no. 6380, pp. 1146–1151, 2018.
M. Fernandez and H. Alani, “Online Misinformation: Challenges and Future Directions,” Web Conf. 2018 - Companion World Wide Web Conf. WWW 2018, pp. 595–602, 2018.
T. Praha, W. Widodo, and M. Nugraheni, “Indonesian Fake News Classification Using Transfer Learning in CNN and LSTM,” JOIV Int. J. Informatics Vis., vol. 8, no. 2, pp. 1213–1221, 2024.
D. Y. Yefferson, V. Lawijaya, and A. S. Girsang, “Hybrid model: IndoBERT and long short-term memory for detecting Indonesian hoax news,” IAES Int. J. Artif. Intell., vol. 13, no. 2, pp. 1911–1922, 2024.
M. Kurniawan, “Artificial Neural Network,” 2024.
“Weighted Sum | Envisioning Vocab.” [Online]. Available: https://www.envisioning.io/vocab/weighted-sum. [Accessed: 22-Jun-2025].
“Perceptron and multilayer architectures | Neural Networks with R.” [Online]. Available: https://subscription.packtpub.com/book/data/9781788397872/1/ch01lvl1sec12/weights-and-biases. [Accessed: 22-Jun-2025].
A. Mishra, “Activation Function In Artificial Neural Network,” 2019. [Online]. Available: https://medium.datadriveninvestor.com/activation-function-in-artificial-neural-network-e03b4a2b953d. [Accessed: 22-Jun-2025].
K. Tyagi, C. Rane, K. Vaidya, J. Challgundla, S. S. Auddy, and M. Manry, “Making Sigmoid-MSE Great Again: Output Reset Challenges Softmax Cross-Entropy in Neural Network Classification,” pp. 1–15, 2024.
B. H. Nayef, S. N. H. S. Abdullah, and M. Mohammed, “Deep Learning Function Implications for Handwritten Character Recognition Using Improved Mean Square Error Function,” Baghdad Sci. J., vol. 24, no. 3, pp. 1016–1033, 2025.
Y. Retnowati, A. Mafahim, and I. Syawanodna, “Comparative Analysis of Artificial Neural Network (ANN) and Random Forest in House Price Prediction,” vol. 5, no. December, pp. 135–150, 2024.
S. Damadi, G. Moharrer, M. Cham, and J. Shen, “The Backpropagation algorithm for a math student,” Proc. Int. Jt. Conf. Neural Networks, vol. 2023-June, no. 2016, pp. 1–15, 2023.
S. Samsudin, A. Ikhwan, R. A. Putri, and M. Badri, “Implementasi Algoritma Backpropagation Neural Networks Untuk Memprediksi Hasil Kinerja Dosen,” J. Inf. Syst. Res., vol. 4, no. 2, pp. 410–417, 2023.
P. Safayenikoo and I. Akturk, “Weight Update Skipping: Reducing Training Time for Artificial Neural Networks,” IEEE J. Emerg. Sel. Top. Circuits Syst., vol. 11, no. 4, pp. 563–574, 2021.
V. Lestari, H. Mawengkang, and Z. Situmorang, “Artificial Neural Network Backpropagation Method to Predict Tuberculosis Cases,” Sinkron, vol. 8, no. 1, pp. 35–47, 2023.
Chinwe I., Anyama O., Uzoma A. U., and Abasiama S., “Effect of Learning Rate on Artificial Neural Network in Machine Learning,” Int. J. Eng. Res. , vol. 4, no. 2, pp. 359–363, 2021.
“Thresholds and the confusion matrix | Machine Learning | Google for Developers.” [Online]. Available: https://developers.google.com/machine-learning/crash-course/classification/thresholding. [Accessed: 22-Jun-2025].
“Classification Threshold.” [Online]. Available: https://www.lakera.ai/ml-glossary/classification-threshold. [Accessed: 22-Jun-2025].
N. Ninja, “Label Encoding: Naming the Unnamed Categories - Let’s Data Science,” 2023. [Online]. Available: https://letsdatascience.com/label-encoding/. [Accessed: 22-Jun-2025].
