
JIP (Jurnal Informatika Polinema) ISSN: 2614-6371 E-ISSN: 2407-070X

H a l a m a n | 509

IMPLEMENTATION OF FACE RECOGNITION AND LIVENESS

DETECTION SYSTEM USING TENSORFLOW.JS

Muhammad Basurah1, Windra Swastika2, Oesman Hendra Kelana3

1,2,3 Informatic Engineerin, FST, Ma Chung University Malang

1basurah.muhammad.mb@gmail.com, 2windra.swastika@machung.ac.id, 3oesman.hendra@machung.ac.id

 Abstract

Facial recognition is a popular biometric security system used to authenticate individuals based on their unique

facial structure. However, this system is vulnerable to spoofing attacks where the attacker can bypass the system
using fake representations of the user's face such as photos, statues or videos. Liveness detection is a method

used to address this issue by verifying that the user is a real person and not a representation. This journal article

focuses on the life sign method of liveness detection, which utilizes facial movements to confirm the user's

existence. We implement the latest technology of artificial intelligence from TensorFlow.js using face-api.js and

compare it with the GLCM algorithm. However, even with the life sign detection method, there is still a chance

of bypassing the system if an attacker uses a video recording. To mitigate this, we propose the addition of an

object detection system to detect the hardware used to show video recordings with ml5.js. Our face recognition

and expression detection system, using the pre-trained model face-api.js, achieved an accuracy of 85% and

82.5%, respectively, and the object detection system built with ml5.js has high accuracy and is very effective for

liveness detection. Our results indicate that face-api.js outperformed GLCM algorithm in detecting spoofing

attempts.

Keywords : life sign, face-api.js, Ml5.js, tensorflow, expression detection, object detection

1. Introduction

 Facial recognition systems are now becoming

very common and widely used in various latest

technologies. Starting from facial recognition on

smartphones and facial recognition for other security

systems. The facial recognition system is included in

the biometric security system which is still one
family with voice recognition, fingerprint

recognition, and retina/iris recognition (Ardiansiah,

Widyadi Setiawan, & Linawati, 2016) The facial

recognition system in the human body is very

interesting where humans can still recognize

someone even though he has grown or experienced

changes, this can also be done by a computer that

applies facial recognition with a good algorithm

(Sudiana, Diponegoro, & Priambodo, 2018).

The problem that often arises in facial recognition

systems is that this system is easily deceived by the

use of fake faces or representations of human faces
such as photos, videos, masks, and statues called

spoofing attack. Spoofing is the act of cheating to

trick the system that was built by exploiting the

security holes of the system (Sthevanie &

Ramadhani, 2014) (Pratap, Priya, & Mani, 2019).

This is because the basic principle of face

recognition is to quote unique face information, then

encode it and compare it with the decoded results

that were previously carried out (Li, Mu, Li, & Peng,

2020). Human face representations cannot be

detected without liveness detection. Without the

Liveness detection system in place, malicious users

would use a photo of a person already registered

with the system to bypass the facial recognition

system and gain personal gain.

 To make the facial recognition system on

online presence more secure, we need a program that
can detect whether the user is real or fake called

Liveness detection. Liveness detection is one way to

identify and confirm a person's identity which refers

to the use of computer vision technology to detect

the real presence of a living user, not representations

such as photos or masks (Chakraborty & Das, 2014)

(Liu, et al., 2019).

 Implementing liveness detection into face

recognition systems can greatly improve security.

Unlike regular face recognition without liveness

detection, which just takes data from the camera

without checking if it's a real person, there's a
potential weakness. The normal face recognition

treats everything in front of it as a real human face,

even if it's just a picture or an object.

 That's where liveness detection comes in to

fix this. It's a way to solve these issues. Liveness

detection first checks if the thing in front of the

camera is a real human or just a fake. If it finds out

it's not a real human, it stops the face recognition,

making it impossible to trick the system. By

Volume 9, Edisi 4, Agustus 2023

510 | H a l a m a n

combining liveness detection with face recognition,

the system's security gets a lot stronger.

 Several actions can be taken to run Liveness

detection, one of which is Heuristic-based

algorithms such as eye movements, lips, and eye

blinks. The algorithm tries to detect lip movement to

ensure the user isn't showing a photo of another

person's face (because the photo doesn't move their

lips or blink).

 In previous studies, there have been studies
that discussed liveness detection but used different

methods. In a study entitled Face Liveness detection

Using Dynamic Texture, texture checking of the

captured image is used to distinguish which users

are real or fake (using photos). In this study, there is

a weakness where a lot of training results are needed

and consist of 2 types, namely fake images (with

photo print textures) and original images (not

photos) for each user who wants to be registered

(Komulainen, De Martino, & Komulainen, 2014).

The application of the liveness detection system will
not be far from artificial intelligence technology.

Artificial Intelligence is a part of computer science

that studies how to make machines do work as well

as humans. Then the apply of machine learning

where it is a branch of artificial intelligence that

focuses on building and studying a system make it

able to learn from the data it obtains (Fikriya,

Irawan, & Soetrisno, 2017) (Bonetto & Latzko,

2020). Then adding computer vision so that the

computer can retrieve visual data from the webcam,

analyze images, videos, and then process the data to
obtain the required information (Wibowo, 2016)

(Tian & Wang, 2020).

All applications related to the artificial

intelligence will be built with the help of the open

source TensorFlow library. TensorFlow is an open

source library for machine learning released by

Google that supports several programming

languages and can be used on all operating systems

(Nugroho, Fenriana, & Arjianto, 2020) (Pang,

Nijkamp, & Wu, 2020). TensorFlow was built with

the aim of doing machine learning and neural

networks in research. TensorFlow works by
combining computational algebra and compilation

optimization techniques, which facilitates the

computation of many mathematical expressions.

Another advantage provided by TensorFlow is that

the results of the written program code will be easier

to read and understand by others because it relies on

libraries to run Machine Learning (Anggraini, 2020)

(Abu, Indra, & Rahman, 2019) (Abadi, Barham,

Chen, & Chen, 2016). in application TensorFlow

through the website, we can be helped by

tensorflow.js which uses the JavaScript
programming language. JavaScript is a language in

the form of a collection of scripts whose functions

run on an HTML document, throughout the history

of the internet this language was the first scripting

language for the web (Sahi, 2020).

In this journal, the solution that will be given to

the weakness of the face recognition system is to

provide a liveness detection system using the life

sign method which will be built using a pre trained

model from tensorflow.js with the name face api.js.

With the implementation of liveness detection, a

facial recognition system will be formed with a

much stronger security system against attacks.

2. Research Method

2.1 Model Architecture and Features

Face-api.js is a cutting-edge javascript module

that utilizes Convolutional Neural Networks (CNNs)

built on top of the tensorflow.js core to provide

efficient face detection, face recognition, and face

expression recognition capabilities for web and

mobile applications. The module's face detection

feature utilizes a Single Shot Multibox Detector

(SSD) based on MobileNetV1 architecture, which
can compute the location of every face in an image

and return their bounding boxes along with their

corresponding probabilities. The model provides

high accuracy in detecting face bounding boxes and

is not designed to prioritize low inference time. The

size of the quantized model is approximately 5.4 MB

(ssd_mobilenetv1_model), and the weights are

trained on the WIDERFACE dataset and provided

by yeephycho on GitHub.

The face recognition capability of face-api.js is

powered by a ResNet-34-like architecture, which
can compute a 128-dimensional face descriptor

feature vector from any given face image. This

feature vector can describe a person's facial

characteristics and is not limited to the set of faces

used for training, allowing for face recognition of

any person. Users can compare the similarity of two

arbitrary faces by comparing their face descriptors

using any classifier of their choice or by computing

the euclidean distance. The neural network is

equivalent to the FaceRecognizerNet used in face-

recognition.js and the net used in the dlib face

recognition example. The weights are trained by
davisking, and the model achieves an impressive

prediction accuracy of 99.38% on the LFW (Labeled

Faces in the Wild) benchmark for face recognition.

The size of the quantized model is roughly 6.2 MB

(face_recognition_model).

The face expression recognition model in face-

api.js is lightweight, fast, and provides reasonable

accuracy. The model employs depthwise separable

convolutions and densely connected blocks and has

a size of approximately 310kb. It is trained on a

variety of images from publicly available datasets,
as well as images scraped from the web. However, it

is worth noting that wearing glasses might decrease

the accuracy of the prediction results. Overall, face-

api.js is a state-of-the-art tool for developers looking

JIP (Jurnal Informatika Polinema) ISSN: 2614-6371 E-ISSN: 2407-070X

H a l a m a n | 511

to implement advanced facial recognition features in

their web and mobile applications.

ML5.js is a versatile machine-learning library

that has brought the power of machine learning into

the web browser. Based on the popular

tensorflow.js, ml5.js allows developers to create

machine learning models and execute them within

the browser, without the need for server-side

processing. One of the most powerful features of

ml5.js is its object detection method, which takes
image classification to the next level. It enables the

identification of multiple objects within an image or

video and locates them by drawing bounding boxes

around the detected content.

Object detection is a crucial computer vision

technique used to identify and locate objects within

an image or video. By drawing bounding boxes

around the identified objects, the method helps to

provide context and extract valuable information

from visual data. Within ml5.js, there are two pre-

trained models for object detection: YOLO and
COCO-SSD. COCO-SSD is the model we will focus

on here.

COCO-SSD is a type of convolutional neural

network (CNN) that uses successive layers of

computation to find complex patterns within an

image. By analyzing pixels and identifying patterns

such as edges, corners, or circles,

2.2 Data Preprocessing for Model Input

Face recognition is a crucial part of many

modern applications, and while pre-trained models
are available, they still require customization to

recognize specific individuals. Face-api.js offers the

face_recognition_model, which allows users to input

new training data to recognize people already

registered in a hosting platform. This process

involves training the model by feeding it with

labeled images to let it learn the unique features of

each individual's face, enabling it to recognize them

in new images. In this study, 12 face images of 6

people were manually labeled, with each person

having 2 photos. The images were used to train the

model, and facial image samples are shown in
Figure 1.

Figure 1 Sample new face to register

Once the model has access to the images, the

ResNet-34 architecture extracts face descriptors,

which are numerical representations of facial

features that the model learns to recognize. These

descriptors are then stored in a database, and face-

api.js API uses the ResNet-34 model to generate

them. With the trained model and stored face

descriptors, the system can recognize individuals in

real-time applications.

2.3 Implementation

In order to implement liveness detection using

face-api.js in your web project, there are several

steps that you need to follow. Firstly, you can
download or include face-api.js from the GitHub

repository, or use a CDN to include it in your web

page. For example, you can add the following script

tag in your HTML file to load face-api.js from the

unpkg CDN that can be seen in figure 2.

Figure 2 Load face-api.js

Once you have included the face-api.js library

in your web project, you can load an image using an

img tag or programmatically using JavaScript. Then,

you can use the detectAllFaces function provided by

face-api.js to detect all the faces in the loaded image.

This function returns a Promise that resolves to an
array of Face Detection objects, which contain

information about the location and size of the

detected faces that can be seen in figure 3.

Figure 3 Load an image

In order to visualize the detected faces, you

can use the Canvas API to draw bounding boxes

around them. For each detected face, you can use the

box property of the corresponding Face Detection

object to get the coordinates of the bounding box

and can be seen in figure 4.

Figure 4 Visualize

If you want to perform face recognition, you

can use the computeFaceDescriptor function

provided by face-api.js to extract the face descriptor

from each detected face. This function returns a

Promise that resolves to a Float32Array of 128

values that represent the unique features of the face.

These features can be used for face matching or

liveness detection purposes that can be seen in figure
5.

Figure 5 Perfome face recognition

Volume 9, Edisi 4, Agustus 2023

512 | H a l a m a n

By following these steps, you can implement

face-api.js to detect faces in an image, draw

bounding boxes around them, and extract face

descriptors for implementing liveness detection in

your website. These features can be used for various

applications such as facial authentication, fraud

detection, and security systems.

Face recognition is now possible by passing

the extracted data and aligned face images to a face

recognition network like ResNet-34. The neural
network maps different facial features onto a face

descriptor, which is a 128-value vector, also called

face embeddings. This model is not restricted to the

training dataset and can be used for face recognition

of any person. The face descriptors of the extracted

image are compared to the reference data using the

Euclidean distance, which is the distance used to

measure the similarity of pattern samples in the

geometric pattern space. The Euclidean metric is

widely used because it is simple to calculate and it

defines whether two faces are similar based on a
threshold value. The Euclidean distance for an n-

dimensional space is defined as figure 6 and

euclidean distance for a two-dimensional space is

defined in equation 1.

𝑑(𝑝, 𝑞) = √∑(𝑝𝑖 − 𝑞𝑖)
2

𝑛

𝑖=0

=

√(𝑞1 − 𝑝1)2 + (𝑞2 − 𝑝2)2 + ⋯ + (𝑞𝑛 − 𝑝𝑛)2 (1)

Figure 6 Euclidean distance for a two-dimensional

space

𝑑 = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 (2)

The traditional Euclidean distance treats each

dimension of a vector equally without considering

their relationship, which can limit its effectiveness

and scope. To address this, weighted Euclidean

distance is often used to improve the accuracy of
face identification. The comparison of two face

images using Euclidean distance to find similarity is

demonstrated in the following pictures that can be

seen in figure 8.

Figure 7 The comparison of two face images using

Euclidean distance

After preparing all the necessary models, the

following is the main flow of the results obtained

from the implementation of liveness detection that

can be seen in figure 9.

Figure 8 Overall flow for liveness detection

2.4 Hyperparameter Tuning

Hyperparameter tuning is needed to optimize
the performance of a machine learning model.

Hyperparameters are settings that are not learned by

the model during training but instead are set by the

user before training. These settings can have a

significant impact on the performance of the model,

and so it is important to find the optimal values for

these hyperparameters in order to achieve the best

possible performance. Hyperparameter tuning

involves systematically adjusting the values of these

settings and evaluating the resulting model

performance to find the best combination of
hyperparameter values for a given task.

Throughout the project, it was observed that

detecting angry expressions using facial expression

detection posed a challenge, resulting in an accuracy

JIP (Jurnal Informatika Polinema) ISSN: 2614-6371 E-ISSN: 2407-070X

H a l a m a n | 513

of just over 50%. To address this issue, I decided to

increase the model's sensitivity to detect angry and

disgusted expressions, setting the threshold to 0.65.

This led to a significant improvement in expression

detection accuracy, as evidenced by the test results

shown in the accompanying picture that can be seen

in figure 10.

Figure 9 Hyperparameter tuning effects

3. Results and Comparison

In this study, an arithmetic was utilized to

conduct a simulation experiment. The participants

were prompted to perform liveness detection five

times by following random instructions generated by
the system. Liveness detection was required before

the participants could do face recognition to input

data into the presence system. The participants were

awarded a score if they followed the instructions

correctly, and their score was reset to zero if they

attempted to spoof the system using a photo. The

results of the experiment are presented in Figure 11.

Furthermore, the accuracy of the liveness

detection was assessed by conducting tests on five

individuals in four different conditions for each

model. The Face recognition results are displayed in
Table 1, the expression detection results in Figure

12, and the object detection results in Table 2.

(a) (b)

(c) (d)

Figure 10 (a) successful liveness detection with

added score; (b) getting 5 scores, resetting and

redirecting to the next page; (c) inputting data to

database; (d) attempting to spoof with a photo an

Table 1 Test for face recognition with 85% result

accuracy

System Recognized Not

Face Recognition 17 3

Figure 11 Expression detection accuracy result is

82.5%

Table 2 Object detection test

Condition Object Detection Result

1 ml5.js Detected

2 ml5.js Detected

3 ml5.js Detected

4 ml5.js Detected

The Face Recognition test results were
obtained by conducting tests with 5 participants

under 4 different conditions. These conditions were

derived from variations in camera quality, including

a 2 Mega Pixel camera for lower quality and a 12

Mega Pixel camera for higher quality, as well as

lighting conditions ranging from no light (0 Lux) to

high light intensity (65 Lux). The combination of

camera quality and lighting conditions resulted in 4

distinct test scenarios, yielding a total of 20 test

results, as shown in Table 1.

Volume 9, Edisi 4, Agustus 2023

514 | H a l a m a n

Similarly, expression detection and object

detection tests were carried out across these 4

conditions, with the main difference being the

number of tests performed. With the capability of

our TensorFlow.js technology to recognize Happy,

Angry, Shocked, and Sad expressions, and

considering 5 participants in 4 distinct conditions,

the expression detection tests result were performed

80 times in total. Following the comprehensive

evaluation of all conditions and expression tests,
observations indicated that detecting Angry

expressions proved to be more challenging,

particularly under low light and low camera quality

conditions. This led to the successful detection of

only 13 Angry expressions out of 20 attempts.

Conversely, detecting Happy expressions exhibited

the highest success rate, with 20 successful

detections across all conditions.

For the object detection utilizing Ml5.js, an

accuracy assessment was conducted to identify

smartphones, a common medium for attempting to
deceive face recognition systems using 2D images.

The evaluation was performed under the same 4

conditions: high camera quality with high light

intensity, low camera quality with high light

intensity, high camera quality with low light

intensity, and low camera quality with low light

intensity. The results of these tests are presented in

Table 2, demonstrating successful detection of

smartphones in all evaluated conditions.

Comparatively, the conventional face

recognition lacking liveness detection capability
could only undergo the initial test, as it lacks the

features to assess expressions or objects in its field

of view. By incorporating liveness detection,

attempts at spoofing through actions like showing a

photo from a phone to simulate an expression

detection can be thwarted using the object detection

mechanism. Enhancing the object detection

capabilities holds the potential to further reinforce

liveness detection, for instance, by training the

system to identify objects beyond smartphones, such

as printed photos or stone textures used in face

replicas, thus bolstering overall security.
For the comparison, we will compare our face-

api.js web based with the GLCM algorithm non-

website based that can be used to do spoofing

detection on facial biometrics. GLCM algorithm that

compares the texture features of a face image.

GLCM generates a co-occurrence matrix of pixel

intensity values and their spatial relationship in an

image, which is then analyzed to extract texture

features such as contrast, homogeneity, and energy.

By comparing the texture features of the input face

image with those of the reference image, the GLCM
algorithm can detect if the input image is a spoof or

a genuine face image, you can find more detail at

Spoofing detection on facial images recognition

using LBP and GLCM combination (Sthevanie &

Ramadhani, 2014). The result of the GLCM

Algorithm from that research can be seen in figure

13.

Figure 12 GLCM accuracy result

Based on Figure 13, GLCM achieved the

highest accuracy at 92% for overall performance

spoofing detection compared to the challenging

face-api.js liveness detection, which involves face

recognition, expression detection, and object

detection. Further comparison will be discussed

below.

Pros of using face-api.js to do liveness

detection:
1. Easy to use and implement, with a clear API

and good documentation

2. Offers a wide range of face detection and

recognition features, including the ability to

detect facial landmarks, expressions, and age

and gender estimation

3. Works well in real-time applications, with fast

processing speeds

4. Can be used on a variety of platforms,

including web and mobile

5. can block spoofing from deep fakes or 3D-
printed masks

Cons of using face-api.js to do liveness

detection:

1. May not be as accurate as more complex

algorithms, particularly for complex scenarios

or in situations with poor lighting or low image

quality

2. May require a significant amount of training

data to achieve high accuracy

Pros of using GLCM algorithm to do liveness
detection:

1. Has been shown to be effective for detecting

spoofing attacks in some scenarios

2. Can be implemented using relatively simple

image-processing techniques

JIP (Jurnal Informatika Polinema) ISSN: 2614-6371 E-ISSN: 2407-070X

H a l a m a n | 515

3. May be particularly effective for detecting

certain types of spoofing attacks, such as those

involving printed images

Cons of using GLCM algorithm to do liveness

detection:

1. May not be as effective for detecting more

sophisticated spoofing attacks, such as those

using deep fakes or 3D-printed masks

2. May require more processing time and
computational resources than some other

algorithms, particularly for large images or

datasets

3. Limited variety of platforms

4. Conclusion

Based on the results of implementing liveness

detection using Face-api.js from tensorflow.js, it can

be concluded that this system has several advantages

over using GLCM algorithm. The combination of
face recognition and expression detection achieves

an accuracy rate of 85%, with an additional liveness

detection system that has an impressive 82.5%

accuracy in detecting user expressions.

Moreover, the advanced security system

created to prevent fraudulent activities such as

replay photo attacks is also notable. By using object

detection, the system can accurately detect the

presence of a real user and prevent the use of fake or

manipulated images.

However, there is still room for improvement
in the system. Optimizing CSS and JavaScript can

significantly reduce the website's rendering blocking

time, improving the website's loading speed and user

experience. Additionally, storing the rendering

results of each face in a database system can further

enhance the face recognition system's accuracy and

reduce the rendering time for clients. Overall, using

Face-api.js for liveness detection and face

recognition provides a robust and accurate solution

for online presence systems.

References:

Abadi, M., Barham, P., Chen, J., & Chen, Z. (2016).

TensorFlow: A system for large-scale

machine learning. Proceedings of the 12th

USENIX Symposium on Operating Systems

Design and Implementation, OSDI 2016.

Abu, M. A., Indra, N. H., & Rahman, A. H. (2019).

A study on image classification based on

deep learning and tensorflow. International

Journal of Engineering Research and

Technology.
Anggraini, W. (2020). Deep Learning Untuk Deteksi

Wajah Yang Berhijab Menggunakan

Algoritma Convolutional Neural Network

(CNN) Dengan Tensorflow. 16.

Ardiansiah, Widyadi Setiawan, & Linawati. (2016).

Sistem Pengenalan Wajah Dengan Metode

Face Features. E-Journal SPEKTRUM Vol

6, No 3, 22.

Bonetto, R., & Latzko, V. (2020). Machine

Learning. Computing in Communication

Networks: From Theory to Practice, 5.

Chakraborty, S., & Das, D. (2014). An Overview Of

Face Liveness Detection. International

Journal on Information Theory (IJIT),
Vol.3.

Fikriya, Z. A., Irawan, M. I., & Soetrisno. (2017).

Implementasi Extreme Learning Machine

untuk Pengenalan Objek Citra Digital.

Jurnal Sains dan Seni ITS Vol. 6, No.1.

Komulainen, J., De Martino, J. M., & Komulainen,

M. (2014). Face Liveness Detection Using

Dynamic Texture. EURASIP Journal on

Image and Video Processing, 2.

Li, L., Mu, X., Li, S., & Peng, H. (2020). A Review

of Face Recognition Technology. IEEE
Access.

Liu, S., Song, Y., Zhang, M., Zhao, J., Yang, S., &

Hou, K. (2019). An identity authentication

method combining liveness detection and

face recognition. Sensors (Switzerland).

Nugroho, P. A., Fenriana, I., & Arjianto, R. (2020).

Implementasi Deep Learning Menggunakan

Convolutional Neural Network (CNN)

Pada Ekspresi Wajah. Jurnal Algor, 17.

Pang, B., Nijkamp, E., & Wu, Y. N. (2020). Deep

Learning With TensorFlow: A Review.
Journal of Educational and Behavioral

Statistics.

Pratap, K., Priya, A., & Mani, G. (2019).

Technologies to overcome spoofing attack

in facial recognition. International Journal

of Recent Technology and Engineering, 3.

Sahi, A. (2020). Aplikasi Test Potensi Akademik

Seleksi Saringan Masuk LP31 Berbasis

Web Online Menggunakan Framework

Codeigniter. Jurnal Teknologi Informasi

Dan Komunikasi.

Sthevanie, F., & Ramadhani, K. (2014). Spoofing
detection on facial images recognition

using LBP and GLCM combination.

International Conference on Data and

Information Science.

Sudiana, D., Diponegoro, A. D., & Priambodo, P. S.

(2018). Sistem Pengenalan Wajah (Face

Recognition) Menggunakan Metode

Hidden Markov Model (HMM). 2.

Tian, H., & Wang, T. (2020). Computer vision

technology in agricultural automation —A

review. Information Processing in
Agriculture, 2.

Wibowo, A. P. (2016). Implementasi Teknik

Computer Vision Dengan Metode Colored

Markers Trajectory Secara Real Time.

Jurnal Teknik Informatika Vol. 8 No.1.

Volume 9, Edisi 4, Agustus 2023

516 | H a l a m a n

