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                                                                                Abstract 

 

Facial recognition is a popular biometric security system used to authenticate individuals based on their unique 

facial structure. However, this system is vulnerable to spoofing attacks where the attacker can bypass the system 
using fake representations of the user's face such as photos, statues or videos. Liveness detection is a method 

used to address this issue by verifying that the user is a real person and not a representation. This journal article 

focuses on the life sign method of liveness detection, which utilizes facial movements to confirm the user's 

existence. We implement the latest technology of artificial intelligence from TensorFlow.js using face-api.js and 

compare it with the GLCM algorithm. However, even with the life sign detection method, there is still a chance 

of bypassing the system if an attacker uses a video recording. To mitigate this, we propose the addition of an 

object detection system to detect the hardware used to show video recordings with ml5.js. Our face recognition 

and expression detection system, using the pre-trained model face-api.js, achieved an accuracy of 85% and 

82.5%, respectively, and the object detection system built with ml5.js has high accuracy and is very effective for 

liveness detection. Our results indicate that face-api.js outperformed GLCM algorithm in detecting spoofing 

attempts. 
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1. Introduction 

 

 Facial recognition systems are now becoming 

very common and widely used in various latest 

technologies. Starting from facial recognition on 

smartphones and facial recognition for other security 

systems. The facial recognition system is included in 

the biometric security system which is still one 
family with voice recognition, fingerprint 

recognition, and retina/iris recognition (Ardiansiah, 

Widyadi Setiawan, & Linawati, 2016) The facial 

recognition system in the human body is very 

interesting where humans can still recognize 

someone even though he has grown or experienced 

changes, this can also be done by a computer that 

applies facial recognition with a good algorithm 

(Sudiana, Diponegoro, & Priambodo, 2018).  

The problem that often arises in facial recognition 

systems is that this system is easily deceived by the 

use of fake faces or representations of human faces 
such as photos, videos, masks, and statues called 

spoofing attack. Spoofing is the act of cheating to 

trick the system that was built by exploiting the 

security holes of the system (Sthevanie & 

Ramadhani, 2014) (Pratap, Priya, & Mani, 2019). 

This is because the basic principle of face 

recognition is to quote unique face information, then 

encode it and compare it with the decoded results 

that were previously carried out (Li, Mu, Li, & Peng, 

2020). Human face representations cannot be 

detected without liveness detection. Without the 

Liveness detection system in place, malicious users 

would use a photo of a person already registered 

with the system to bypass the facial recognition 

system and gain personal gain. 

 To make the facial recognition system on 

online presence more secure, we need a program that 
can detect whether the user is real or fake called 

Liveness detection. Liveness detection is one way to 

identify and confirm a person's identity which refers 

to the use of computer vision technology to detect 

the real presence of a living user, not representations 

such as photos or masks (Chakraborty & Das, 2014) 

(Liu, et al., 2019).  

 Implementing liveness detection into face 

recognition systems can greatly improve security. 

Unlike regular face recognition without liveness 

detection, which just takes data from the camera 

without checking if it's a real person, there's a 
potential weakness. The normal face recognition 

treats everything in front of it as a real human face, 

even if it's just a picture or an object. 

 That's where liveness detection comes in to 

fix this. It's a way to solve these issues. Liveness 

detection first checks if the thing in front of the 

camera is a real human or just a fake. If it finds out 

it's not a real human, it stops the face recognition, 

making it impossible to trick the system. By 
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combining liveness detection with face recognition, 

the system's security gets a lot stronger. 

 Several actions can be taken to run Liveness 

detection, one of which is Heuristic-based 

algorithms such as eye movements, lips, and eye 

blinks. The algorithm tries to detect lip movement to 

ensure the user isn't showing a photo of another 

person's face (because the photo doesn't move their 

lips or blink).  

 In previous studies, there have been studies 
that discussed liveness detection but used different 

methods. In a study entitled Face Liveness detection 

Using Dynamic Texture, texture checking of the 

captured image is used to distinguish which users 

are real or fake (using photos). In this study, there is 

a weakness where a lot of training results are needed 

and consist of 2 types, namely fake images (with 

photo print textures) and original images (not 

photos) for each user who wants to be registered 

(Komulainen, De Martino, & Komulainen, 2014). 

The application of the liveness detection system will 
not be far from artificial intelligence technology. 

Artificial Intelligence is a part of computer science 

that studies how to make machines do work as well 

as humans. Then the apply of machine learning 

where it is a branch of artificial intelligence that 

focuses on building and studying a system make it 

able to learn from the data it obtains (Fikriya, 

Irawan, & Soetrisno, 2017) (Bonetto & Latzko, 

2020). Then adding computer vision so that the 

computer can retrieve visual data from the webcam, 

analyze images, videos, and then process the data to 
obtain the required information (Wibowo, 2016) 

(Tian & Wang, 2020). 

All applications related to the artificial 

intelligence will be built with the help of the open 

source TensorFlow library. TensorFlow is an open 

source library for machine learning released by 

Google that supports several programming 

languages and can be used on all operating systems 

(Nugroho, Fenriana, & Arjianto, 2020) (Pang, 

Nijkamp, & Wu, 2020). TensorFlow was built with 

the aim of doing machine learning and neural 

networks in research. TensorFlow works by 
combining computational algebra and compilation 

optimization techniques, which facilitates the 

computation of many mathematical expressions. 

Another advantage provided by TensorFlow is that 

the results of the written program code will be easier 

to read and understand by others because it relies on 

libraries to run Machine Learning (Anggraini, 2020) 

(Abu, Indra, & Rahman, 2019) (Abadi, Barham, 

Chen, & Chen, 2016). in application TensorFlow 

through the website, we can be helped by 

tensorflow.js which uses the JavaScript 
programming language. JavaScript is a language in 

the form of a collection of scripts whose functions 

run on an HTML document, throughout the history 

of the internet this language was the first scripting 

language for the web (Sahi, 2020). 

In this journal, the solution that will be given to 

the weakness of the face recognition system is to 

provide a liveness detection system using the life 

sign method which will be built using a pre trained 

model from tensorflow.js with the name face api.js. 

With the implementation of liveness detection, a 

facial recognition system will be formed with a 

much stronger security system against attacks. 

 

2. Research Method 

 

2.1 Model Architecture and Features  

 

Face-api.js is a cutting-edge javascript module 

that utilizes Convolutional Neural Networks (CNNs) 

built on top of the tensorflow.js core to provide 

efficient face detection, face recognition, and face 

expression recognition capabilities for web and 

mobile applications. The module's face detection 

feature utilizes a Single Shot Multibox Detector 

(SSD) based on MobileNetV1 architecture, which 
can compute the location of every face in an image 

and return their bounding boxes along with their 

corresponding probabilities. The model provides 

high accuracy in detecting face bounding boxes and 

is not designed to prioritize low inference time. The 

size of the quantized model is approximately 5.4 MB 

(ssd_mobilenetv1_model), and the weights are 

trained on the WIDERFACE dataset and provided 

by yeephycho on GitHub. 

The face recognition capability of face-api.js is 

powered by a ResNet-34-like architecture, which 
can compute a 128-dimensional face descriptor 

feature vector from any given face image. This 

feature vector can describe a person's facial 

characteristics and is not limited to the set of faces 

used for training, allowing for face recognition of 

any person. Users can compare the similarity of two 

arbitrary faces by comparing their face descriptors 

using any classifier of their choice or by computing 

the euclidean distance. The neural network is 

equivalent to the FaceRecognizerNet used in face-

recognition.js and the net used in the dlib face 

recognition example. The weights are trained by 
davisking, and the model achieves an impressive 

prediction accuracy of 99.38% on the LFW (Labeled 

Faces in the Wild) benchmark for face recognition. 

The size of the quantized model is roughly 6.2 MB 

(face_recognition_model). 

The face expression recognition model in face-

api.js is lightweight, fast, and provides reasonable 

accuracy. The model employs depthwise separable 

convolutions and densely connected blocks and has 

a size of approximately 310kb. It is trained on a 

variety of images from publicly available datasets, 
as well as images scraped from the web. However, it 

is worth noting that wearing glasses might decrease 

the accuracy of the prediction results. Overall, face-

api.js is a state-of-the-art tool for developers looking 
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to implement advanced facial recognition features in 

their web and mobile applications.  

ML5.js is a versatile machine-learning library 

that has brought the power of machine learning into 

the web browser. Based on the popular 

tensorflow.js, ml5.js allows developers to create 

machine learning models and execute them within 

the browser, without the need for server-side 

processing. One of the most powerful features of 

ml5.js is its object detection method, which takes 
image classification to the next level. It enables the 

identification of multiple objects within an image or 

video and locates them by drawing bounding boxes 

around the detected content. 

Object detection is a crucial computer vision 

technique used to identify and locate objects within 

an image or video. By drawing bounding boxes 

around the identified objects, the method helps to 

provide context and extract valuable information 

from visual data. Within ml5.js, there are two pre-

trained models for object detection: YOLO and 
COCO-SSD. COCO-SSD is the model we will focus 

on here. 

COCO-SSD is a type of convolutional neural 

network (CNN) that uses successive layers of 

computation to find complex patterns within an 

image. By analyzing pixels and identifying patterns 

such as edges, corners, or circles, 

2.2 Data Preprocessing for Model Input  

 

Face recognition is a crucial part of many 

modern applications, and while pre-trained models 
are available, they still require customization to 

recognize specific individuals. Face-api.js offers the 

face_recognition_model, which allows users to input 

new training data to recognize people already 

registered in a hosting platform. This process 

involves training the model by feeding it with 

labeled images to let it learn the unique features of 

each individual's face, enabling it to recognize them 

in new images. In this study, 12 face images of 6 

people were manually labeled, with each person 

having 2 photos. The images were used to train the 

model, and facial image samples are shown in 
Figure 1.  

 
Figure 1 Sample new face to register 

Once the model has access to the images, the 

ResNet-34 architecture extracts face descriptors, 

which are numerical representations of facial 

features that the model learns to recognize. These 

descriptors are then stored in a database, and face-

api.js API uses the ResNet-34 model to generate 

them. With the trained model and stored face 

descriptors, the system can recognize individuals in 

real-time applications. 

 

2.3 Implementation 

 

In order to implement liveness detection using 

face-api.js in your web project, there are several 

steps that you need to follow. Firstly, you can 
download or include face-api.js from the GitHub 

repository, or use a CDN to include it in your web 

page. For example, you can add the following script 

tag in your HTML file to load face-api.js from the 

unpkg CDN that can be seen in figure 2.  

 

 
Figure 2 Load face-api.js 

Once you have included the face-api.js library 

in your web project, you can load an image using an 

img tag or programmatically using JavaScript. Then, 

you can use the detectAllFaces function provided by 

face-api.js to detect all the faces in the loaded image. 

This function returns a Promise that resolves to an 
array of Face Detection objects, which contain 

information about the location and size of the 

detected faces that can be seen in figure 3.  

 

 
Figure 3 Load an image 

In order to visualize the detected faces, you 

can use the Canvas API to draw bounding boxes 

around them. For each detected face, you can use the 

box property of the corresponding Face Detection 

object to get the coordinates of the bounding box 

and can be seen in figure 4. 

 

 
Figure 4 Visualize 

If you want to perform face recognition, you 

can use the computeFaceDescriptor function 

provided by face-api.js to extract the face descriptor 

from each detected face. This function returns a 

Promise that resolves to a Float32Array of 128 

values that represent the unique features of the face. 

These features can be used for face matching or 

liveness detection purposes that can be seen in figure 
5.  

 
Figure 5 Perfome face recognition 
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By following these steps, you can implement 

face-api.js to detect faces in an image, draw 

bounding boxes around them, and extract face 

descriptors for implementing liveness detection in 

your website. These features can be used for various 

applications such as facial authentication, fraud 

detection, and security systems.  

Face recognition is now possible by passing 

the extracted data and aligned face images to a face 

recognition network like ResNet-34. The neural 
network maps different facial features onto a face 

descriptor, which is a 128-value vector, also called 

face embeddings. This model is not restricted to the 

training dataset and can be used for face recognition 

of any person. The face descriptors of the extracted 

image are compared to the reference data using the 

Euclidean distance, which is the distance used to 

measure the similarity of pattern samples in the 

geometric pattern space. The Euclidean metric is 

widely used because it is simple to calculate and it 

defines whether two faces are similar based on a 
threshold value. The Euclidean distance for an n-

dimensional space is defined as figure 6 and 

euclidean distance for a two-dimensional space is 

defined in equation 1. 

 

𝑑(𝑝, 𝑞) =  √∑(𝑝𝑖 −  𝑞𝑖)
2 

𝑛

𝑖=0

= 

√(𝑞1 −  𝑝1)2 + (𝑞2 −  𝑝2)2 + ⋯ + (𝑞𝑛 −  𝑝𝑛)2   (1) 

 

 
Figure 6 Euclidean distance for a two-dimensional 

space 

𝑑 = √(𝑥1 − 𝑥2)2 + (𝑦1 −  𝑦2)2         (2) 

 
The traditional Euclidean distance treats each 

dimension of a vector equally without considering 

their relationship, which can limit its effectiveness 

and scope. To address this, weighted Euclidean 

distance is often used to improve the accuracy of 
face identification. The comparison of two face 

images using Euclidean distance to find similarity is 

demonstrated in the following pictures that can be 

seen in figure 8.  

 

 
Figure 7 The comparison of two face images using 

Euclidean distance 

After preparing all the necessary models, the 

following is the main flow of the results obtained 

from the implementation of liveness detection that 

can be seen in figure 9.  

 

 
Figure 8 Overall flow for liveness detection 

 

2.4 Hyperparameter Tuning 

Hyperparameter tuning is needed to optimize 
the performance of a machine learning model. 

Hyperparameters are settings that are not learned by 

the model during training but instead are set by the 

user before training. These settings can have a 

significant impact on the performance of the model, 

and so it is important to find the optimal values for 

these hyperparameters in order to achieve the best 

possible performance. Hyperparameter tuning 

involves systematically adjusting the values of these 

settings and evaluating the resulting model 

performance to find the best combination of 
hyperparameter values for a given task. 

Throughout the project, it was observed that 

detecting angry expressions using facial expression 

detection posed a challenge, resulting in an accuracy 
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of just over 50%. To address this issue, I decided to 

increase the model's sensitivity to detect angry and 

disgusted expressions, setting the threshold to 0.65. 

This led to a significant improvement in expression 

detection accuracy, as evidenced by the test results 

shown in the accompanying picture that can be seen 

in figure 10.  

 

 
Figure 9 Hyperparameter tuning effects 

 

3. Results and Comparison 

 

In this study, an arithmetic was utilized to 

conduct a simulation experiment. The participants 

were prompted to perform liveness detection five 

times by following random instructions generated by 
the system. Liveness detection was required before 

the participants could do face recognition to input 

data into the presence system. The participants were 

awarded a score if they followed the instructions 

correctly, and their score was reset to zero if they 

attempted to spoof the system using a photo. The 

results of the experiment are presented in Figure 11.  

Furthermore, the accuracy of the liveness 

detection was assessed by conducting tests on five 

individuals in four different conditions for each 

model. The Face recognition results are displayed in 
Table 1, the expression detection results in Figure 

12, and the object detection results in Table 2. 

 

 
(a)                             (b) 

  
(c)                             (d) 

Figure 10 (a) successful liveness detection with 

added score; (b) getting 5 scores, resetting and 

redirecting to the next page; (c) inputting data to 

database; (d) attempting to spoof with a photo an 

Table 1 Test for face recognition with 85% result 

accuracy 

System Recognized Not  

Face Recognition 17 3 

 

 
Figure 11 Expression detection accuracy result is 

82.5% 

 

Table 2 Object detection test 

Condition Object Detection Result 

1 ml5.js Detected 

2 ml5.js Detected 

3 ml5.js Detected 

4 ml5.js Detected 

 

The Face Recognition test results were 
obtained by conducting tests with 5 participants 

under 4 different conditions. These conditions were 

derived from variations in camera quality, including 

a 2 Mega Pixel camera for lower quality and a 12 

Mega Pixel camera for higher quality, as well as 

lighting conditions ranging from no light (0 Lux) to 

high light intensity (65 Lux). The combination of 

camera quality and lighting conditions resulted in 4 

distinct test scenarios, yielding a total of 20 test 

results, as shown in Table 1. 
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Similarly, expression detection and object 

detection tests were carried out across these 4 

conditions, with the main difference being the 

number of tests performed. With the capability of 

our TensorFlow.js technology to recognize Happy, 

Angry, Shocked, and Sad expressions, and 

considering 5 participants in 4 distinct conditions, 

the expression detection tests result were performed 

80 times in total. Following the comprehensive 

evaluation of all conditions and expression tests, 
observations indicated that detecting Angry 

expressions proved to be more challenging, 

particularly under low light and low camera quality 

conditions. This led to the successful detection of 

only 13 Angry expressions out of 20 attempts. 

Conversely, detecting Happy expressions exhibited 

the highest success rate, with 20 successful 

detections across all conditions. 

For the object detection utilizing Ml5.js, an 

accuracy assessment was conducted to identify 

smartphones, a common medium for attempting to 
deceive face recognition systems using 2D images. 

The evaluation was performed under the same 4 

conditions: high camera quality with high light 

intensity, low camera quality with high light 

intensity, high camera quality with low light 

intensity, and low camera quality with low light 

intensity. The results of these tests are presented in 

Table 2, demonstrating successful detection of 

smartphones in all evaluated conditions. 

Comparatively, the conventional face 

recognition lacking liveness detection capability 
could only undergo the initial test, as it lacks the 

features to assess expressions or objects in its field 

of view. By incorporating liveness detection, 

attempts at spoofing through actions like showing a 

photo from a phone to simulate an expression 

detection can be thwarted using the object detection 

mechanism. Enhancing the object detection 

capabilities holds the potential to further reinforce 

liveness detection, for instance, by training the 

system to identify objects beyond smartphones, such 

as printed photos or stone textures used in face 

replicas, thus bolstering overall security.  
For the comparison, we will compare our face-

api.js web based with the GLCM algorithm non-

website based that can be used to do spoofing 

detection on facial biometrics. GLCM algorithm that 

compares the texture features of a face image. 

GLCM generates a co-occurrence matrix of pixel 

intensity values and their spatial relationship in an 

image, which is then analyzed to extract texture 

features such as contrast, homogeneity, and energy. 

By comparing the texture features of the input face 

image with those of the reference image, the GLCM 
algorithm can detect if the input image is a spoof or 

a genuine face image, you can find more detail at 

Spoofing detection on facial images recognition 

using LBP and GLCM combination (Sthevanie & 

Ramadhani, 2014). The result of the GLCM 

Algorithm from that research can be seen in figure 

13.  

 

 
Figure 12 GLCM accuracy result 

Based on Figure 13, GLCM achieved the 

highest accuracy at 92% for overall performance 

spoofing detection compared to the challenging 

face-api.js liveness detection, which involves face 

recognition, expression detection, and object 

detection. Further comparison will be discussed 

below. 

 

Pros of using face-api.js to do liveness 

detection: 
1. Easy to use and implement, with a clear API 

and good documentation 

2. Offers a wide range of face detection and 

recognition features, including the ability to 

detect facial landmarks, expressions, and age 

and gender estimation 

3. Works well in real-time applications, with fast 

processing speeds 

4. Can be used on a variety of platforms, 

including web and mobile 

5. can block spoofing from deep fakes or 3D-
printed masks 

 

Cons of using face-api.js to do liveness 

detection: 

1. May not be as accurate as more complex 

algorithms, particularly for complex scenarios 

or in situations with poor lighting or low image 

quality 

2. May require a significant amount of training 

data to achieve high accuracy 

 

Pros of using GLCM algorithm to do liveness 
detection: 

1. Has been shown to be effective for detecting 

spoofing attacks in some scenarios 

2. Can be implemented using relatively simple 

image-processing techniques 
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3. May be particularly effective for detecting 

certain types of spoofing attacks, such as those 

involving printed images 

 

Cons of using GLCM algorithm to do liveness 

detection: 

1. May not be as effective for detecting more 

sophisticated spoofing attacks, such as those 

using deep fakes or 3D-printed masks 

2. May require more processing time and 
computational resources than some other 

algorithms, particularly for large images or 

datasets 

3. Limited variety of platforms 

 

4. Conclusion  

 

Based on the results of implementing liveness 

detection using Face-api.js from tensorflow.js, it can 

be concluded that this system has several advantages 

over using GLCM algorithm. The combination of 
face recognition and expression detection achieves 

an accuracy rate of 85%, with an additional liveness 

detection system that has an impressive 82.5% 

accuracy in detecting user expressions. 

Moreover, the advanced security system 

created to prevent fraudulent activities such as 

replay photo attacks is also notable. By using object 

detection, the system can accurately detect the 

presence of a real user and prevent the use of fake or 

manipulated images. 

However, there is still room for improvement 
in the system. Optimizing CSS and JavaScript can 

significantly reduce the website's rendering blocking 

time, improving the website's loading speed and user 

experience. Additionally, storing the rendering 

results of each face in a database system can further 

enhance the face recognition system's accuracy and 

reduce the rendering time for clients. Overall, using 

Face-api.js for liveness detection and face 

recognition provides a robust and accurate solution 

for online presence systems. 
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