Model Klasifikasi Pada Seleksi Mahasiswa Baru Penerima KIP Kuliah Menggunakan Regresi Logistik Biner
DOI:
https://doi.org/10.33795/jip.v8i4.914Keywords:
KIP Kuliah, regresi logistik biner, undersampling, oversampling, kinerja klasifikasiAbstract
Seleksi mahasiswa baru penerima Kartu Indonesia Pintar Kuliah (KIP Kuliah) dilakukan oleh setiap institusi untuk memilih mahasiswa yang benar-benar memiliki potensi akademik yang baik dan keterbatasan ekonomi. Pada penelitian ini menggunakan regresi logistik biner sebagai model klasifikasi. Data hasil preprocessing dibagi menjadi data training dan data testing. Beberapa model regresi logistik dibandingkan kinerjanya, baik yang menggunakan data asli, data hasil normalisasi, data undersampling, data oversampling, serta data hasil kombinasi oversampling dan undersampling. Evaluasi model berdasarkan signifikansi parameter di dalam model dan kinerja klasifikasi dari matriks konfusi. Dari perbandingkan tujuh model regresi logistik, model yang terbaik adalah model yang menggunakan data asli dengan rerata F1 Score 92,40%, rerata recall sebesar 87,93%, accuracy sebesar 88,01%, precision sebesar 97,92%, dan AUC sebesar 84,6%.