ANALISA 4 ALGORITMA DALAM KLASIFIKASI LIVER MENGGUNAKAN RAPIDMINER
DOI:
https://doi.org/10.33795/jip.v6i2.274Abstract
Hati merupakan salah satu organ penting dalam tubuh manusia yang berfungsi untuk detoksifikasi racun atau penetral racun dari segala sesuatu yang masuk ke dalam tubuh kita, sehingga tubuh menjadi lebih sehat. Hati dapat terserang suatu penyakit yang mampu mengganggu tugasnya, apabila penyakit hati sudah menyerang maka racun akan tersebar ke seluruh tubuh dan membuat tubuh menjadi tidak sehat. Penyakit liver merupakan penyakit hati yang disebabkan oleh virus, alkohol, pola hidup dan lainnya. Menurut data WHO (World Health Organization) menunjukkan hampir 1,2 juta orang per tahun khususnya di Asia Tenggara dan Afrika mengalami kematian akibat terserang penyakit liver. Seseorang sering tidak menyadari atau terlambat mengetahui penyakit liver sehingga ketika diperiksa penyakit liver sudah parah, akan lebih baik apabila dilakukan penanganan lebih awal dengan mengetahui gejala-gejala yang diderita. Data mining mampu membantu diagnosa penyakit liver dengan lebih mudah terutama untuk membantu para dokter dalam menentukan apakah pasien menderita penyakit liver atau tidak, dengan gejala hampir mendekati penyakit liver. Proses diagnosa penyakit liver dilakukan dengan proses klasifikasi dan hasilnya berupa pasien tersebut menderita liver atau tidak. Penelitian ini menggunakan 4 algoritma data mining yaitu Naïve Bayes, K-Nearest Neighbor (KNN), Decision Tree dan Neural Network. Dataset yang digunakan yaitu Indian Liver Patient Dataset (ILPD) dari website UCI Machine Learning Repository. Keempat algoritma tersebut dibandingkan manakah yang lebih baik akurasinya untuk kasus diagnosa penyakit liver. Hasilnya menunjukkan bahwa algoritma Naïve Bayes memiliki akurasi 55,75%, algoritma K-Nearest Neigbor memiliki akurasi 66,36%, algoritma Decision Tree memiliki akurasi 67,04%, dan algoritma Neural Network memiliki akurasi 70,50%. Akurasi tersebut tergolong rendah karena kelas atau label antara pasien penyakit liver dan pasien tidak memiliki liver tidaklah seimbang, kelas pasien penyakit liver lebih banyak dibandingkan pasien tidak memiliki liver, sehingga banyak data yang diklasifikasikan sebagai pasien penyakit liver.
Keywords— Data Mining, Decision Tree, Klasifikasi, KNN, Liver, Naïve Bayes, Neural Network