IMPLEMENTATION OF FACE RECOGNITION AND LIVENESS DETECTION SYSTEM USING TENSORFLOW.JS

Authors

  • Muhammad Basurah
  • Windra Swastika
  • Oesman Hendra Kelana

DOI:

https://doi.org/10.33795/jip.v9i4.1332

Keywords:

liveness detection, face recognition, face-api.js, tensorflow, javascript, website, tensorflow.js

Abstract

Facial recognition is a popular biometric security system used to authenticate individuals based on their unique facial structure. However, this system is vulnerable to spoofing attacks where the attacker can bypass the system using fake representations of the user's face such as photos, statues or videos. Liveness detection is a method used to address this issue by verifying that the user is a real person and not a representation. This journal article focuses on the life sign method of liveness detection, which utilizes facial movements to confirm the user's existence. We implement the latest technology of artificial intelligence from TensorFlow.js using face-api.js and compare it with the GLCM algorithm. However, even with the life sign detection method, there is still a chance of bypassing the system if an attacker uses a video recording. To mitigate this, we propose the addition of an object detection system to detect the hardware used to show video recordings with ml5.js. Our face recognition and expression detection system, using the pre-trained model face-api.js, achieved an accuracy of 85% and 82.5%, respectively, and the object detection system built with ml5.js has high accuracy and is very effective for liveness detection. Our results indicate that face-api.js outperformed GLCM algorithm in detecting spoofing attempts.

Downloads

Download data is not yet available.

Downloads

Published

2023-08-22

How to Cite

Basurah , M., Swastika , W. ., & Kelana , O. H. . (2023). IMPLEMENTATION OF FACE RECOGNITION AND LIVENESS DETECTION SYSTEM USING TENSORFLOW.JS. Jurnal Informatika Polinema, 9(4), 509–516. https://doi.org/10.33795/jip.v9i4.1332