Sistem Pendeteksi Kualitas Daging Segar dengan Metode Naive Bayes
DOI:
https://doi.org/10.33795/jip.v10i2.5006Keywords:
GLCM, naive bayes, pendeteksi kualitas daging, pengolahan citraAbstract
Daging sapi merupakan salah satu sumber protein yang banyak dikonsumsi masyarakat Indonesia. Daging banyak dijual baik di pasar tradisional maupun pasar modern. Beberapa penjual yang tidak jujur mencampur daging segar dan tidak segar pada produknya untuk mendapatkan keuntungan lebih. Sebagian konsumen akhirnya mendapatkan daging yang kurang segar karena tidak semua konsumen memiliki pengetahuan mengenai kesegaran daging. Penelitian ini mengembangkan sistem pendeteksi kualitas daging untuk membantu pengguna yang tidak memahami tingkat kesegaran daging. Di samping itu keterbatasan mata manusia memungkinkan kesalahan dalam menentukan daging merupakan daging segar atau tidak segar. Aplikasi yang dibuat akan mendeteksi kesegaran daging melalui warna dan tekstur daging, Data yang digunakan pada penelitian ini adalah citra daging sapi segar dan tidak segar yang diperoleh dari berbagai sumber. Metode pengolahan data meliputi praproses citra dilanjutkan dengan ekstraksi fitur. Fitur yang digunakan adalah fitur warna melalui perhitungan HIS serta fitur tekstur menggunakan metode Gray-Level Co-occurrence Matrix (GLCM). Fitur warna dan tekstur tersebut selanjutnya diklasifikasikan ke dalam daging segar atau tidak segar menggunakan metode Naïve Bayes. Berdasarkan hasil pengujian, diperoleh nilai akurasi sebesar 92%. Penelitian ini diharapkan dapat memberikan kontribusi dalam pengembangan sistem untuk mendeteksi kualitas daging segar dan dapat membantu menginformasikan tentang kualitas daging bagi pengguna yang tidak memiliki pengetahuan tentang kesegaran daging.