

Journal homepage: http://jos-mrk.polinema.ac.id/ ISSN: 2722-9203 (media online/daring)

PERENCANAAN JARINGAN PIPA TRANSMISI DAN DISTRIBUSI AIR BERSIH KECAMATAN GEDANGAN KABUPATEN SIDOARJO JAWA TIMUR

Rochman Nur Amin¹, Winda Harsanti², Moh. Charits³

Mahasiswa Manajemen Rekayasa Konstruksi, Jurusan Teknik Sipil, Politeknik Negeri Malang¹, Dosen Jurusan Teknik Sipil, Politeknik Negeri Malang², Dosen Jurusan Teknik Sipil, Politeknik Negeri Malang³

Email: rochmannur1205@gmail.com l1, wharsanti@gmail.com 2, mohcharits@gmail.com 3

ABSTRAK

Kecamatan Gedangan memiliki masalah air bersih dikarenakan sumber air bersih yang tidak mencukupi. Oleh karena itu, diperlukan adanya perencanaan jaringan distribusi air bersih. Tujuan dari penelitian ini adalah untuk mengetahui perkiraan jumlah penduduk, mengetahui kebutuhan air bersih di Kecamatan Gedangan pada tahun 2036, menentukan dimensi jaringan pipa transmisi dan distribusi air bersih, dimensi reservoir, menghitung rencana Rencana Anggaran Biaya. Data yang dibutuhkan adalah peta topografi untuk merancang layout pipa yang dibuat, data jumlah penduduk untuk memproyeksikan jumlah penduduk pada 15 tahun mendatang, dan data debit sumber air untuk menghitung kecukupan sumber air. Hasil kajian menunjukan jumlah penduduk pada tahun 2036 sebanyak 214.007 jiwa, debit kebutuhan air bersih 0,3303 m³/det, pipa transmisi dan distribusi menggunakan pipa HDPE, dan memiliki pipa sepanjang 18883 m,dengan rincian pipa Ø16 inch sepanjang 519 m, Ø14 inch sepanjang 2028 m, Ø13 inch sepanjang 3584 m, Ø7 inch sepanjang 61 m, Ø6 inch sepanjang 3200 m, Ø5 inch sepanjang 5140 m, Ø4 inch sepanjang 4351 m. Resevoir yang didesain berukuran 32 x 11,5 x 16 m. Biaya yang diperlukan adalah Rp. 34.572.008.000

Kata Kunci : Jaringan Pipa, Kebutuhan Air, Perencanaan

ABSTRACT

Gedangan District has clean water problems due to insufficient clean water sources. Therefore, it is necessary to plan a clean water distribution network. The purpose of this research is to determine the estimated population, determine the need for clean water in Gedangan District in 2036, determine the dimensions of the transmission and distribution pipelines for clean water, reservoir dimensions, and calculate the Budget Plan. The data needed are contour maps to design a pipe scheme, population data to project the population in the next 15 years, and water source discharge data to calculate the adequacy of water sources. The results of the study show that the population in 2036 is 214,007 people, the discharge needs of clean water is 0.3303 m^3/s , transmission and distribution pipes use HDPE pipes, and have pipes of 18883 m, Ø 16 inches along 519 m, Ø14 inches along 2028 m, Ø 13 inch along 3584 m, Ø 7 inch along 61 m, Ø 6 inch along 3200 m, Ø 5 inch along 5140 m, Ø 4 inch along 4351 m. Reservoir size 32 x 11.5 x 16 m. The cost required is Rp. 34.572.008.000

Keywords: Planning, Pipeline Network, Water Demand

1. PENDAHULUAN

Air bersih adalah salah satu jenis sumber daya berbasis air yang mempunyai mutu yang baik dan biasa dimanfaatkan oleh penduduk untuk dikonsumsi atau melakukan aktivitas sehari-hari. Seiring pertumbuhan penduduk kebutuhan air semakin meningkat di suatu daerah. Keterbatasan tersedianya air bersih mengakibatkan pelayanan penyediaan air belum maksimal dan merata, serta kontinuitas dalam pelayanan penyediaan air masih kurang. Kecamatan Gedangan adalah salah satu kecamatan yang

terletak di Kabupaten Sidoarjo Provinsi Jawa Timur. Jumlah penduduk Kecamatan Gedangan menurut hasil sensus Penduduk 2020 sebesar 113.553 jiwa yang terdiri dari 67.623 jiwa penduduk laki-laki dan 65.975 jiwa penduduk perempuan yang terbagi dalam 15 desa dan Kecamatan Gedangan memiliki luas wilayah sebesar 23.68 km²

Masih banyak masyarakat Gedangan mengeluhkan permasalah air bersih, dan beberapa warga masih menggunakan sumur bor untuk memenuhi kebutuhan air, namun ketika musim kemarau sumur tersebut mengalami pengurangan debit dan kualitas air yang mengakibatkan masyarakat sangat membutuhkan pasokan air yang lebih. Untuk itu perlu dilakukan perencanaan jaringan pipa air bersih di Kecamatan Gedangan guna mengatasi permasalahan yang ada. Dalam merencanakan penyediaan air bersih baru tentunya dibutuhkan data-data untuk menunjang perencanaan yang terdiri atas debit sumber air dan jumlah penduduk yang akan dilayani.

2. METODE

Proyeksi Jumlah Penduduk

Proyeksi penduduk pada tahun rencana didapat dari perhitungan yang berdasarkan data jumlah penduduk selama 10 tahun terakhir dengan menggunakan 3 (tiga) metode, yaitu aritmatika, geometri dan eksponensial. Selanjutnya akan didapatkan nilai standar deviasi yang terkecil dari ketiga metode tersebut yang nantinya akan digunakan sebagai acuan perhitungan perencanaan.

Dalam memperkirakan jumlah penduduk pada tahun mendatang dapat dilakukan perhitungan dengan cara sebagai berikut:

$$r = (\frac{penduduk (n)-penduduk (n-1)}{p tengah tahun penduduk (n-1)})X 100\%$$
(1)

Metode proyeksi jumlah penduduk dapat dihitung menggunakan rumus sebagai berikut:

Metode Aritmatika
$$Pn = Po (1 + n \times r)$$
 (2)

Metode Geometrik
$$Pt = Po (1 + r)^2$$
 (3)

Metode Eksponen
$$Pt = Po \times e^{r.n}$$
 (4)

Keterangan:

P_t = Jumlah penduduk pada akhir periode t (orang)

P_o = Jumlah penduduk pada awal periode t (orang)

e = Bilangan eksponensial = 2,718

r = Tingkat pertumbuhan penduduk

n = Tingkat waktu/tahun proyeksi (tahun)

Data Debit

Debit adalah volume air yang mengalir persatuan waktu melewati suatu penampang melintang sungai pipda dan sebagainya. Data Debit yang diambil dalam perencanaan kali ini memakai sumber air Sungai Mangetan yang diperoleh dari Dinas Pekerjaan Umum dan Penataan Ruang Kabupaten Sidoarjo 2020.

Kebutuhan Air

a) Kebutuhan Air Domestik (Qd)

Kebutuhan air domestik merupakan kebutuhan air yang digunakan untuk keperluan rumah tangga. Kebutuhan air juga dapat dilihat berdasarkan kategori dalam standar Dirjen Cipta Karya DPU. Perhitungan kebutuhan air domestic dihitung menggunakan rumus sebagai berikut:

Sambungan Rumah (SR)

Jumlah penduduk terlayani x konsumsi SR X Prosentase SR (5)

Hidran Umum (HU)

Jumlah penduduk terlayani x konsumsi HU x Prosentase HU (6)

Air Domestik

$$Qd = SR + HU \tag{7}$$

b) Kebutuhan Air Non Domestik

Kebutuhan air non domestik adalah kebutuhan air yang berasal dari fasilitas umum atau fasilitas social pada tahun proyeksi. Standar kebutuhan mengacu pada peraturan kriteria Perencanaan Dirjen Cipta Karya DPU seperti kategori I (metro), kategori II (kota besar), kategori III (kota sedang), kategori IV (kota kecil) dan kategori V (desa)

$$fn = \frac{\text{Jumlah penduduk ke} - n}{\text{jumlah penduduk awal}} x \text{ fasilitas tahun ke} - n$$

c) Kebutuhan Harian Rata-rata (Qrt)

Kebutuhan harian rata-rata (Qrt) merupakan jumlah air yang diperlukan untuk memenuhi kebutuhan domestic dan non-domestik

$$Qrt = Qd + Qnd$$
 (8)

Keterangan:

Qrt = Kebutuhan air rata-rata Qd = Debit air yang dibutuhkan Qnd = Kebutuhan air non domestik

d) Kehilangan Air (Qha)

Besarnya kehilangan air menurut (DPU Dirjen Cipta Karya 2000) ditetapkan sebesar 20-30% kebutuhan harian rata-rata.

Qha =
$$20-30\% \times (Qd+Qnd)$$
 (9)

Keterangan:

Qd = Debit air yang tersedia

Qnd = Kebutuhan air non domestic

e) Kebutuhan Air Jam Puncak (Qpeak)

Fluktuasi kebutuhan air pada jam puncak dapat dicari dengan rumus berikut(Permen PU No.27/RT/M2016) Qpeak= F peak x Q max (10)

Keterangan:

Qr = Kebutuhan air harian max

Analisis Data

Analisis data dilakukan untuk mengubah data hasil dari penelitian yang akan menjadi informasi yang nantinya bisa dipergunakan dalam mengambil kesimpulan.

Perencanaan Jaringan Pipa

Gambar perencanaan jaringan pipa digambar dalam Software Auto cad dan diaplikasikan pada Epanet 2.2 dengan peta topografi daerah rencana sebagai acuan penetuan

perletakan reservoir serta sebagai dasar perhitungan penentuan dimensi pipa sehingga diharapkan gambar dapat dibaca dengan mudah. Letak reservoir juga dijadikan sebagai dasar perhitungan sebagai penentu dimensi yang akan dipakai berdasarkan perhitungan interpolasi elevasi dan panjang saluran. Interpolasi elevasi dihitung dengan cara.

$$elevasi \ awal = \left(\frac{l1}{Ltotal}\right) x (elevasi \ awal - elevasi \ akhir)$$

Perhitungan Sisa Tekan

Perhitungan sisa tekan dipengaruhi oleh nilai hilang tinggi tekan (Hf). Apabila nilai sisa tekan di bawah 10 m maka harus menggunakan pompa yang sesuai dengan kekurangan dari nilai sisa tekan dan apabila nilai sisa tekan melebihi 100 m maka harus menggunakan Bak Pelepas Tekan.

EPANET 2.2

Epanet adalah sebuah progam computer yang dapat mensimulasikan hidraulik dan perilaku kualitas air dalam suatu jaringan pipa distribusi air minum. Hasil dari progam EPANET antara lain debit yang mengalir dalam pipa, tekanan air dari masing-masing titik/node yang dapat dipakai sebagai analisis dalam menentukan operasi instalasi, pompa dan reservoir.

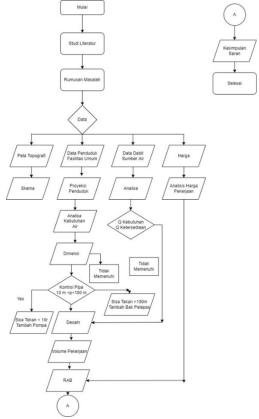
Dimensi Pipa

Perhitungan dimensi pipa dapat dihitung menggunakan persamaan berikut:

$$D = \sqrt{\frac{4 \times Q}{V \times r}} \tag{11}$$

Keterangan:

V	= Kecepatan	(m/det)
r	= Jari-jari	(m)
O	= Debit air	(m^3/det)


Desain Pompa

Berdasarkan pedoman penyusunan perancangan teknis Pengembangan Sistem Penyediaan Air Minum 2007 Debit pompa distribusi ditetapkan berdasarkan fluktuasi pemakaian air satu hari. Pompa wajib menyuplai debit air saat jam puncak dimana pompa besar, saat pemakaian minimum pompa kecil yang bekerja.

Perhitungan Rencana Anggaran Biaya (RAB)

Dalam tahap akhir, hasil desain yang dibuat akan dihitung anggaran biayanya, baik dari segi bahan, alat, serta upah yang dikeluarkan untuk tenaga kerja. Perhitungan RAB ini menggunakan Harga Satuan Pekerjaan Kabupaten Sidoarjo 2021.

Untuk merencanakan jaringan pipa perlu adanya diagram alir untuk memudahkan pelaksanaan pekerjaan, Bagan alir ini akan menjelaskan urutan pekerjaan, data-data yang dibutuhkan, serta metode yang akan dilakukan.

Gambar 1 Prosedur Analisis Studi

3. HASIL DAN PEMBAHASAN

a. Proyeksi Jumlah Penduduk

Tabel 1 Proyeksi Penduduk Desa Ganting

Tahun	T I	Jumlah Proyeksi Penduduk				
ke –(n)	Tahun	Aritmatika	Eksponen	Geometrik		
1	2022	5090	5930	5091		
2	2023	5195	7055	5200		
3	2024	5300	8394	5310		
4	2025	5405	9985	5423		
5	2026	5510	11879	5539		
6	2027	5615	14133	5657		
7	2028	5720	16813	5777		
8	2029	5825	20002	5900		
9	2030	5930	23796	6026		
10	2031	6036	28309	6154		
11	2032	6141	33678	6286		
12	2033	6246	40066	6419		
13	2034	6351	47666	6556		
14	2035	6456	56706	6696		
15	2036	6561	67462	6838		
∑ (jumla	h)	87381.662	391875.089	88874.028		
Standar I (Sd)	Defiasi	469.823	19248.100	557.932		

Sumber: Hasil Perhitungan

Contoh perhitungan pada tahun 2021:

Diketahui:

 $P_{2021} = 4985 \text{ jiwa}$

n = 1

r = 2.11%

Metode Aritmatika, menggunakan Rumus 2

Pt = Po
$$(1 + n \times r)$$

 $P_{2022} = P_{2021}(1 + n \times r)$
= 4985 $(1 + 1 \times 2.11\%)$
= 5090 jiwa

Metode Geometrik, menggunakan Rumus 3

Pt =Po
$$(1+r)^n$$

 $P_{2022} = P_{2021}(1+r)^n$
= 4985 $(1+2.11\%)1$
= 5930 jiwa

Metode Exponenial, menggunakan Rumus 4

$$\begin{array}{ll} Pt & = Po \ x \ e^{r \ n} \\ P_{2022} = P_{2021} \ x \ 2.718282^m \\ & = 4985 \ x \ 2.718282^{(1 * 2.11\%)} \\ & = 5091 \ jiwa \end{array}$$

Dari hasil yang di dapat perhitungan diatas pada kecamatan Ganting menggunakan metode Aritmatika karna memiliki standar deviasi yang terkecil dimana pada proyeksi tahun 2036 terdapat 6.561 penduduk.

b. Kebutuhan Air Domestik (Qd)

Nilai kebutuhan domestic didasarkan pada kebutuhan air rumah tangga. Berikut contoh perhitungan pada Desa Ganting:

Jumlah Penduduk
$$= 6.561$$

Tingkat pelayanan $(SR) = 6.561 \times 80\% = 5.249$
 $(HU) = 6.561 \times 20\% = 1.312$

Sambungan rumah (Qsr) = $5.249 \times 80 = 419.893$ lt/hari Hidran Umum (Qhu) = $5.249 \times 20 = 104.973$ lt/hari Hasil perhitungan kebutuhan air domestic untuk seluruh Kecamatan Gedangan dapat dilihat pada **Tabel 2.**

Tabel 2 Kebutuhan Air Domestik

Desa	Jumlah penduduk 2021	Jumlah Penduduk Terlayani (80%)	Qsr (lt/hari)	Qhu (lt/hari)
Ganting	6,561	5,249	419,893	20,995
Karangbong	15,361	12,289	983,092	49,155
Tebel	21,431	17,145	1,371,563	68,578
Kragan	3,074	2,459	196,727	9,836
Gemurung	10,947	8,758	700,622	35,031
Punggul	10,802	8,642	691,341	34,567
Sruni	13,222	10,578	846,216	42,311
Kebonanom	13,722	10,978	878,215	43,911
Kebonsikep	30,699	24,559	1,964,707	98,235
Gedangan	16,374	13,099	1,047,947	52,397
Ketajen	10,766	8,613	689,023	34,451
Wedi	15,889	12,712	1,016,925	50,846
Semambung	8,934	7,147	571,763	28,588
Sawotratap	21,492	17,193	1,375,472	68,774
Bangah	14,803	11,843	947,406	47,370

c. Kebutuhan Air Non Domestik (Qnd)

Nilai Q non domestic didapatkan dari jumlah fasilitas umum maupun fasilitas sosisal yang telah diproyeksikan sesuai tahun proyeksi. Sebagai contoh perhitungan proyeksi jumlah TK pada tahun 2036 di desa Gedangan:

Penduduk tahun 2021 = 13753 jiwa Penduduk tahun 2036 = 16374 jiwa Jumlah TK (fo) = 4 unit

$$fn = \frac{16374}{13753}x4$$
$$= 5 \text{ unit}$$

Qnd= Jumlah fasilitas x tingkat pemakaian air (24x3.600)

 $= 5 \times 3.0000 \text{ lt/hari} / (24 \times 3.600)$

= 0.173 lt/dt

Hasil perhitungan dari kebutuhan air non domestic untuk seluruh wilayah di Kecamatan Gedangan dapat dilihat pada **Tabel 3.**

Tabel 3 Kebutuhan Air Non Domestik

Desa	TK	Puke smas	SD	SD(swa sta)	SMP	SMA	Masjid
Ganting	988	19848	0	120789	13392 8	0	1
Karangbong	755	22701	0	0	11500	0	1
Tebel	2651	40044	2975 0	15559	0	0	1
Kragan	840	7602	0	0	11562	0	0
Gemurung	3083	14950	0	0	0	0	1
Punggul	685	38286	0	61726	0	0	1
Sruni	3949	49281	0	0	0	0	1
Kebonanom	3610	34860	0	0	0	0	1
Kebonsikep	2387	83101	0	0	0	0	1
Gedangan	3775	26241	8001	53703	39178 3	0	1
Ketajen	1720	17019	1679 5	0	0	0	1
Wedi	2325	23826	0	8275	10563	0	1
Semambung	1440	27099	6078	2643	0	0	0
Sawotratap	1592	49785	1021 4	44978	15677	0	1
Bangah	1853	29340	0	0	0	0	1

Kehilangan Air Bersih

Perhitungsn kehilangan air dihitung dari 20-30% Q rata-rata. Berikut contoh perhitungan kehilangan air di Desa Gedangan tahun 2036.

Kehilangan Air = 20% x (Qsr + Qhu + Qnd)

Contoh perhitungan: Gedangan

Kehilangan Air = 20% x (1.047,947 + 52,397 + 483,504) = 316,770 lt/hari

d. Jumlah Air Jam Puncak

Kebutuhan air jam puncak didapatkan dari hasil jumlah perhitungan antara kebutuhan air perkapita untu sr,hu.

Berikut adalah contoh perhitungan di Kecamatan Gedangan

Kebutuhan Total = 1,900,618 x1.5 = 2,850,927 lt/hari

Kebutuhan air m³/dt = Kebutuhan air pipa distribusi x $\frac{0.001}{360x 24}$

= 2,850,927 x $\frac{0,001}{360x 24}$ = 0.0330 m³/dt

e. Kebutuhan Air Harian Maksimum

Perhitungan yang didapat dari hasil jumlah perhitungan antara kebutuhan air perkapita di sr,hu, kehilangan air serta qnd. Berikut adalah contoh perhitungan di Kecamatan Gedangan

Kebutuhan air m³/dt = Keb. Pipa distribusi x
$$(\frac{0,001}{360 \times 24})$$

= 20.267,250 x $(\frac{0,001}{360 \times 24})$ = 0,242 m³/dt

Dari perhitungan diatas bisa dilihat untuk detai hitungan pada tiap Desa di Kecamtan Gedangan pada **Tabel 4.**

Tabel 4 Kebutuhan Air Harian Maksimum

	Qsr	Qhu	Qnd	Qkehilangan	Oharia	Qharian
	(lt/hari)	(lt/harri)	(lt/hari)	(lt/hari)	n max	max
Desa	(IVIIaII)	(IVIIAIII)	(It/IIaII)	(It/IIaii)		
					(lt/hari	(mt/dt)
Ganting	419,893	20,995	275,554	143,288	945,703	0.0109
Karangbong	983,092	49,155	34,957	213,441	1,408,70	0.0163
Karangoong	,05,0,2	.,,,,,,,	5.,,,,,,	213,	9	0.0105
Tebel	1,371,563	68,578	88,005	305,629	2,017,15	0.0233
					4	
Kragan	196,727	9,836	20,004	45,314	299,070	0.0035
Gemurung	700,622	35,031	18,034	150,737	994,866	0.0115
Punggul	691,341	34,567	100,698	165,321	1,091,12	0.0126
a .	046.216	40.211	52.221	100 251	0	0.0144
Sruni	846,216	42,311	53,231	188,351	1,243,11	0.0144
Kebonanom	878,215	43,911	38,471	192,119	1,267,98	0.0147
reconuncin	,	- ,-	,	,	8	
Kebonsikep	1,964,707	98,235	85,489	429,686	2,835,92	0.0328
a 1	1 047 047	52.207	102.504	216 770	9	0.0242
Gedangan	1,047,947	52,397	483,504	316,770	2,090,68	0.0242
Ketajen	689,023	34,451	35,535	151,802	1,001,89	0.0116
Retajen	,	- 1, 1-1	,	,	1	******
Wedi	1,016,925	50,846	44,990	222,552	1,468,84	0.0170
					5	
Semambung	571,763	28,588	37,260	127,522	841,648	0.0097
Sawotratap	1,375,472	68,774	122,247	313,298	2,067,77	0.0239
Domook	947,406	47,370	31,194	205,194	1,354,28	0.0157
Bangah	277, 4 00	77,370	31,174	203,194	1,334,26	0.0137

Debit Tersedia

Dalam perencanaan jaringan distribusi air bersih Kecamatan Gedangan menggunakan sumber air Sungai Mangetan dengan debit air sebesar 20.601 m³/dt atau setara dengan 20601.29 l/dt Debit andalan didapat dari hasil perhitungan berikut ini:

Contoh Perhitungan: Debit

Q Tersedia = 20.601 lt/detik (musim hujan)

= 20.401 lt/detik (musim kemarau)

Q kebutuhan Kota Sidoarjo = 13038 lt/detik

Q yang dicari = 20.601 - 13.038

 $= 7.563 \text{ m}^3/\text{detik}$

Debit yang tersedia harus lebih besar atau sama dengan debit rencana kebutuhan, maka debit rencana kebutuhan di Kecamatan Gedangan menjadi:

Kapasitas debit rencana

= debit tersedia > total kebutuhan rencana air bersih

 $= 7,563 \text{m}^3/\text{detik} > 0,3089 \text{ m}^3/\text{detik}$ (memenuhi)

Simulasi dan Analisis Jaringan menggunakan EPANET 2.2

Dari hasil perhitungan EPANET dapat digunakan sebagai acuan untuk perhitungan manual dengan tujuan agar proses pekerjaan dalam membuat suatu jaringan akan meminimalisir kesalahan karena pada perhitungan ini didapatkan skema jaringan seperti keadaan yang ada pada lapangan, dan tentunya jika ada beberapa perbedaan dari perhitungan manual maka hasil yang ada di EPANET adalah perhitungan yang ada di EPANET akan menjadi acuan pada perhitungan manual yang akan digunakan.

Berdasarkan hasil perhitungan nilai sisa tekan/ pressure menggunakan aplikasi EPANET dihasilkan sisa tekan dari R-1 bernilai 74.336m, sedangkan perhitungan nilai sisa tekan dengan hitungan manual dihasilkan nilai sisa tekan R-1 dengan nilai 73.336m. Dari hasil kedua perhitungan tersebut dapat disimpulkan bahwa ada selisih nilai yang kecil yang ada di EPANET dan manual yang akan digunakan adalah hitungan manual/excel.

Tabel 5. Node Parameter Jaringan Air Bersih Kecamatan Gedangan

Node ID	Elevation m	Base Demand LPS	Demand LPS	Head m	Pressure m
Junc N1	5.992	14.93	14.93	80.33	74.34
Junc N2	13.175	10.01	10.01	60.47	47.29
Junc N3	12.941	10.01	10.01	57.50	44.56
Junc N4	10.251	6.54	6.54	55.87	45.62
Junc N5	11.724	0	0.00	41.05	29.32
Junc N6	11.792	11.1167	11.12	30.82	19.03
Junc N7	12.925	11.1167	11.12	24.90	11.98
Junc N8	13.056	6.54	6.54	25.78	12.72
Junc N9	11.714	0	0.00	105.78	94.07
Junc N10	11.766	15.9182	15.92	73.25	61.49
Junc N11	11.806	15.9182	15.92	52.02	40.21
Junc N12	11.817	4.72	4.72	49.10	37.28
Junc N13	13.050	6.5400	6.54	105.78	92.73
Junc N14	11.730	0	0.00	92.83	81.10
Junc N15	11.730	17.22	17.22	76.57	64.84
Junc N16	11.788	15.70	15.70	52.81	41.02
Junc N17	11.444	44.76	44.76	78.32	66.88
Junc N18	11.497	0	0.00	75.19	63.70
Junc N19	11.480	7.9063	7.91	73.81	62.33
Junc N20	11.460	7.9063	7.91	55.57	44.11
Junc N21	11.492	23.18	23.18	95.58	84.08
Junc N22	11.172	32.997	33.00	70.96	59.79
Junc N23	13.283	16.318	16.32	70.15	56.87
Junc N24	13.332	0	0.00	68.99	55.66
Junc N25	13.449	6.642	6.64	56.50	43.05
Junc N26	13.504	6.642	6.64	49.16	35.66

Tabel 6. Link Parameter Jaringan Air Bersih Kecamatan

Gedangan

Link ID	Length m	Diameter mm	Roughness	Flow LPS	Velocity m/s	Unit Headloss m/km
Pipe 1	1052	361.800	140	315.39	3.07	18.88
Pipe 2	562	126.600	140	10.01	0.80	5.28
Pipe 3	275	361.800	140	295.37	2.87	16.72
Pipe 4	924	361.800	140	288.83	2.81	16.04
Pipe 5	845	144.600	140	22.23	1.35	12.10
Pipe 6	924	126.600	140	11.12	0.88	6.41
Pipe 7	1104	361.800	140	266.60	2.59	13.83
Pipe 9	560	126.600	140	36.56	2.90	58.08
Pipe 10	1054	126.600	140	20.64	1.64	20.15
Pipe 11	1280	113	140	4.72	0.47	2.28
Pipe 13	768	321.2	140	216.96	2.68	16.86
Pipe 14	340	126.6	140	32.92	2.62	47.84
Pipe 15	1957	126.600	140	15.70	1.25	12.14
Pipe 16	1167	321.200	140	184.04	2.27	12.43
Pipe 17	422	321.200	140	139.28	1.72	7.42
Pipe 18	72	162.800	140	38.99	1.87	19.23
Pipe 19	810	144.600	140	31.09	1.89	22.51
Pipe 21	1047	321.200	140	100.29	1.24	4.04
Pipe 22	423	321.200	140	67.29	0.83	1.93
Pipe 23	61	180.800	140	50.98	1.99	18.95
Pipe 24	806	113.000	140	13.28	1.32	15.50
Pipe 25	1710	113.000	140	6.64	0.66	4.29
Pipe 26	433	144.600	140	21.37	1.30	11.25
Pipe 27	303	126.600	140	16.32	1.30	13.04
Pipe 28	190	407	140	330.32	2.54	11.59
Pump P1	#N/A	#N/A	#N/A	6.54	0.00	-80.00

• Length : Panjang pipa

• Diameter : Besar pipa yang digunakan

Flow : Kecepatan air

Dari tabel perhitungan pipa pada EPANET, akan mengetahui kebutuhan panjang pipa dan diameter yang akan dipakai dan debit air yang akan dialiri pada pipa tersebut.

Dimensi Pipa

Untuk menentukan dimensi pipa yang akan direncanakan setelah mendapatkan tetakanan pada titik sebelumnya atau penempatan pada hulu pipa. Perhitungan dimensi pipa menggunakan Rumus 10, berikut contoh perhitungan dimensi pipa pada node 1-2

dimensi pipa pada node 1-2
$$Dmin = \sqrt{\frac{4 \times 3154}{4.5 \times r}}$$

$$= 0.362$$

$$Dmax = \sqrt{\frac{4 \times 3154}{0.2 \times r}}$$

$$= 0.358$$

Pada contoh node 1-2, dari hasil perhitungan D*min* dan D*max*, penentuan Dpakai yaitu D*min*<Dpakai<D*max*, maka diameter yang dipakai adalah 361.800 mm atau 14 inci.

Tabel 7. Diameter Pipa

P	anPipa	De	bit	Gradien		Diameter			
Dago	inripa	4.00	2/1	Hidrolis	s	Dhitung	Dpakai	Dpakai	Dpakai
		(lt/dt)	m3/dt			(m)	(m)	(mm)	(inchi)
1	IPAL	242.231	0.2422	0.02	0.000	0.324	0.362	361.800	16
IPAL	R	242.231	0.2422	0.02	0.000	0.324	0.407	407.000	16
R	1	330.315	0.3303	0.02	0.000	0.364	0.407	407.000	16
1	2	315.389	0.3154	0.02	-0.007	0.358	0.362	361.800	14
2	3	10.006	0.0100	0.02	0.000	0.096	0.127	126.600	5
2	4	295.377	0.2954	0.02	0.011	0.349	0.362	361.800	14
4	5	288.837	0.2888	0.02	-0.002	0.346	0.362	361.800	14
5	6	22.233	0.0222	0.02	0.000	0.131	0.145	144.600	6
6	7	11.117	0.0111	0.02	-0.001	0.100	0.127	126.600	5
5	8	266.604	0.2666	0.02	-0.001	0.336	0.362	361.800	14
8	13	6.540	0.0065	0.02	0.000	0.082	0.113	113.000	4
8	9	253.524	0.2535	0.02	0.001	0.329	0.321	321.200	14
9	10	36.557	0.0366	0.02	0.000	0.158	0.127	126.600	5
9	14	216.967	0.2170	0.02	0.000	0.310	0.321	321.200	14
14	15	32.923	0.0329	0.02	0.000	0.152	0.127	126.600	5
15	16	15.702	0.0157	0.02	0.000	0.114	0.127	126.600	5
10	11	20.600	0.0206	0.02	0.000	0.000	0.127	126.600	5
11	12	4.720	0.0047	0.02	0.000	0.072	0.113	113.000	4
14	17	184.044	0.1840	0.02	0.000	0.292	0.321	321.200	14
17	18	139.285	0.1393	0.02	0.000	0.262	0.321	321.200	14
18	19	38.995	0.0390	0.02	0.000	0.162	0.163	162.800	6
19	20	31.100	0.0311	0.02	0.000	0.000	0.145	144.600	6
20	21	23.183	0.0232	0.02	0.000	0.133	0.145	144.600	6
18	22	100.290	0.1003	0.02	0.000	0.231	0.321	321.200	13
22	23	67.293	0.0673	0.02	-0.005	0.199	0.321	321.200	13
23	24	50.976	0.0510	0.02	-0.001	0.179	0.181	180.800	7
24	25	13.284	0.0133	0.02	0.000	0.107	0.113	113.000	4
25	26	6.600	0.0066	0.02	0.000	0.000	0.113	113.000	4
24	27	21.374	0.0214	0.02	0.000	0.129	0.145	144.600	6
24	28	16.318	0.0163	0.02	-0.001	0.116	0.127	126.600	5

Desain Pompa

Penambahan pompa didasari oleh hitungan sisa tekan yang kurang dari 10 atau minus (-) maka akan di tambahkan pompa, jika lebih dari 10 tidak ditambahkan pompa atau tetap, contoh penempatan pompa pada jaringan ini terdapat pada titik hulu jaringan.

Rencana Anggaran Biaya (RAB)

Hasil rencana anggaran biaya ditabelkan pada tabel berikut:

Tabel 8. Rekapitulasi Anggaran Biaya

	REKAPITULASI RENCANA ANGGARAN BIAYA						
NO.	URAIAN PEKERJAAN	В	IAYA (Rp)				
I	PEKERJAAN PERSIAPAN	Rp	147,547,140.39				
II	PEKERJAAN PIPA	Rp	21,763,208,948.57				
III	PEKERJAAN RESERVOIR	Rp	4,358,088,393.18				
IV	PEKERJAAN POMPA	Rp	5,160,252,869.20				
A	JUMLAH	Rp	31,429,097,351.34				
В	PPN 10%	Rp	3,142,909,735.13				
C	TOTAL (A + B)	Rp	34,572,007,086.48				
D	TOTAL (Dibulatkan)	Rp	34,572,008,000.00				
	Tiga Puluh Empat Miliyar Lima Ratus Tujuh Puluh Dua Juta Delapan Ribu Rupiah						

Dari tabel diatas didapat uraian sebagai berikut :

- a. Pada titik area kebutuhan air yang ditambahkan dengan beberapa pompa yang digunakan antara lain: EBARA FSNA 200x150, EBARA FSNA 100x80 dan FS4LA 522
- b. Pada pekerjaan pipa menghabiskan biaya sebesar 21.763.208.948.57
- c. Pekerjaan pompa menghabiskan biaya sebesar 5.160.252.869.20
- d. Ditambah ppn 10% pada setiap pekerjaan
- e. Biaya yang dibutuhkan untuk perencanaan ini sebesar 34.572.008.000.00

4. KESIMPULAN

Kesimpulan dari perencanaan jaringan pipa transmisi dan distribusi air bersih Kecamatan Gedangan Kabupaten Sidoarjo sebagai berikut:

- a. Jumlah penduduk tahun 2020 sebanyak 113.553 jiwa yang terbagi dalam 15 desa dan Kecamatan Gedangan memiliki luas wilayah sebesar 23.68 km² hasil proyeksi untuk tahun 2036 sebanyak 469.823 jiwa
- b. Debit air yang dibutuuhkan pada Kecamatan Gedangan pada tahun 2036 sebesar 20,928 lt/dt
- c. Jaringan pipa transmisi dan distribusi di Kecamatan Gedangan menggunakan sistem percabangan karena area yang akan dialiri cukup luas dan beberapa titik menggunakan pompa untuk pendistribusian ke desa.
- d. Panjang total rencana pekerjaan pipa adalah 1883 m
- e. Biaya yang dibutuhkan untuk perencanaan ini sebesar Rp. 34.572.008.000.00

DAFTAR PUSTAKA

- 1) Ardiansyah, (2012). Analisa Kinerja Sistem Distribusi Air Bersih Pada PDAM Kota Ternate
- Badan Pembangunan Sumber Daya Manusia RI. (2018)
 Perencanaan Jaringan Pipa Transmisi Dan Distribusi Air Minum.
- 3) DPU Ditjen Cipta Karya. (2007). Pengembangan SPAM (Sistem Penyediaan Air Minum) Sederhana. Jakarta:
- 5) Dinkes Dinas Kesehatan Kab.Sidoarjo. (2014). *Kondisi Eksisting Kabupaten Sidoarjo*.
- 6) Kementrian PUPR. (2018). "Perencanaan Teknis Air Minum Dengan Menggunakan Progam Aplikasi"
- 7) Hanum, Farida (2002). Proses Pengolahan Air Sungai Untuk Keperluan Air Minum. Universitas Sumatra Utara
- 8) Menteri Kesehatan. (1990). No.416 "Syarat-syarat dan Pengawasan Kualitas Air"
- Departemen Pekerjaan Umum, Direktorat Jenderal Cipta Karya.
- 10) Feny Nelwan. dkk. (2013). Perencanaan Jatingan Air Bersih Desa Kima Bajo Kecamatan Wori
- Peraturan Menteri Kesehatan RI Nomor: 416/Menkes/ Per/IX/1990 tentang Syarat- Syarat Pengawasan Kualitas Air