

Journal homepage: http://jurnal.polinema.ac.id/

ISSN: 2722-9203 (media online/daring)

PASSIVE SEISMIC CONTROL PADA GEDUNG RUMAH SAKIT UPT VERTIKAL SURABAYA TOWER C DENGAN ANALISA PUSHOVER

Mahfud Budiman^{1,*}, Taufiq Rochman², Medi Efendi³

Mahasiswa D4 Manajemen Rekayasa Konstruksi, Jurusan Teknik Sipil, Politeknik Negeri Malang¹, Dosen Jurusan Teknik Sipil Politeknik Negeri Malang³ Email: <u>mahfudbudiman02@gmail.com¹</u>, <u>taufiq.rochman@polinema.ac.id²</u>, <u>medipolinema@gmail.com³</u>

ABSTRAK

Tujuan penelitian ini adalah untuk menganalisis pengaruh penggunaan sistem *isolasi* dasar pada *displacement* dan momen struktur beton bertulang. Penelitian diawali dengan pemodelan struktur menggunakan aplikasi *ETABS* sehingga didapatkan *displacement* dan momen struktur *fixbase*. Tahap selanjutnya memberikan gaya pada model struktur dengan *isolasi* dasar *High Dumper Rubber Bearing* sehingga didapatkan *displacement* dan momen struktur dengan *Base Isolator*. Kemudian dilakukan Analaisa kurva kapasitas. Hasil dari analisis didapatkan bahwa nilai *displacement* struktur yang menggunakan *Base Isolator*. Kemudian dilakukan grafik bahwa nilai Perpindahan lebih besar dari struktur *fixbase*. Berdasarkan hasil analisis dari *Software ETABS* dapat dilihat pada grafik bahwa nilai Pu Kolom dengan penggunaan *Base Isolation* nilainya lebih besar dari Pu Kolom *fixbase*, dan jika penggunaan tumpuan jepit lebih banyak dari penggunaan *Base Isolation* pada struktur maka nilai semakin kecil dari struktur *fixbase*. Dan untuk momen pada balok tumpuan maupun lapangan dapat dilihat pada grafik bahwa nilai momen yang terjadi pada balok struktur *Base Isolation* semakin besar dari struktur *fixbase*. Pada analisis kurva kapasitas dapat dilihat pada grafik perbandingan nilai kurva kapasitas bahwa struktur dengan penggunaan *Base Isolation* nilai penggunaan *Base Isolation* pada struktur *fixbase*. Pada analisis kurva kapasitas dapat

Kata kunci : Base Isolation, Displacement, Momen Struktur, Kurva Kapasitas

ABSTRACT

The purpose of this study is to analyze the effect of the use of a basic insulation system i on the displacement and moment of the reinforced concrete structure. The research began with structural modeling using the ETABS application so that the displacement and moment of the fixbase structure were obtained. The next stage provides force to the structural model with the basic insulation of the High Dumper Rubber Bearing so that the displacement and moment of the structure are obtained with the base insulator. Then the capacity curve analysis is carried out. The results of the analysis showed that the displacement value of the structure using system seismic isolation was much greater than that of the fixbase structure. Based on the results of the analysis from ETABS Software, it can be seen in the graph that the value of the Pu Column with the use of system seismic isolation on the structure, the value of the fixbase structure is smaller. For the moment value of the column, it is obtained that with the use of system seismic isolation on the structure, the value of the field, it can be seen in the graph that the value of the moment that occurs on the beam of the system seismic isolation structure is greater than the fixbase structure. And for the moment on the pedestal beam and the field, it can be seen in the graph that the value of the moment that occurs on the beam of the system seismic isolation structure is greater than the fixbase structure. In the capacity curve analysis, it can be seen in the graph that the value of system seismic isolation has a displacement of the system seismic isolation structure is greater than the fixbase structure. In the capacity curve analysis, it can be seen in the graph that the value of system seismic isolation has a displacement of the system seismic isolation structure is greater than the fixbase structure. In the use of system seismic isolation has a displacement value greater than the fixbase structure with the use of system seismic isolation has a displacement value great

Keywords : system seismic isolation, Displacement, Structural Moment, Capacity Curve

Indonesia merupakan salah satu negara rawan gempa, terletak diantara empat lempeng tektonik. Sehingga Indonesia perlu untuk melakukan analisa lebih lanjut dengan didukung teknologi guna menciptakan perlindungan dari besarnya kerugian yang diakibatkan bencana gempa. Untuk mengetahui performa suatu bangunan dapat dilakukan dengan analisa pushover. Dalam analisa ini, gedung didesain dengan menambahkan base isolatoion pada bangunan tersebut. Kesulitan yang mungkin didapati adalah bagaimana merencanakan struktur gedung yang kuat dan stabil terhadap beban lateral terutama beban gempa. Sehingga perlu dilakukan analisis lebih lanjut mengenai pengaruh beban gempa terhadap perilaku struktur bangunan gedung yang menggunakan system seismic isolation maupun tanpa system seismic isolation (fixed base).

Analisis yang dapat digunakan untuk analisa beban gempa menggunakan dua metode, yaitu metode analisis statik ekuivalen dan analisis dinamik.

Sistem Seismic Isolation

Menurut SNI 1726:2019 pasal 12.5.4.1 dalam desain gaya geser bahwa sistem isolation, pondasi, dan semua elemen yang berada dibawah sistem isolation, didesain dengan gaya:

$$Vb = K_{Dmax} D_D \tag{2.1}$$

Sedangkan untuk gaya geser minimum struktur yang diatas sistem isolation.

$$V_s = \frac{K_{Dmax}.D_D}{R_1} \tag{2.2}$$

Sistem Isolation dapat disesain sesuai dengan kebutuhan yang digunakan menggunakan dengan catalog bridgestone. Derajat Kebebasan

Derajat kebebasan adalah derajat independensi yang diperlukan untuk menyatakan posisi suatu sistem pada setiap saat. Jumlah derajat kebebasan adalah jumlah koordinat yang diperlukan untuk menyatakan posisi suatu massa pada saat tertentu.

1. Sistem Kebebasan Derajat Tunggal (SDOF)

Sistem kebebasan derajat tunggal adalah sistem yang dimodelisasi sebagai sistem dengan koordinat perpindahan tunggal. Dimana massa pada bangunan terdapat pada 1 lantai mempunyai massa. Setiap lantai mempunyai kebebasan bergerak yang biasa disebut sebagai degree of freedom. Biasanya bangunan 1 lantai disebut sebagai SDOF atau bangunan rendah dengan kekakuan yang sama.

2. Sistem Kebebasan Derajat Banyak (MDOF)

Gambar 1. Struktur Portal Tingkat Dua

Berdasarkan keseimbangan dinamik berkaitan dengan respon struktur terhadap gerakan tanah adalah sebagai berikut:

 $K u(t) + C\dot{u}(t) + M\ddot{u}(t) = mx \ddot{u}gx (t) + my \ddot{u}gy (t) + mz \ddot{u}gz (t)$ Yaitu.

K	= matriks kekakuan
С	= matriks redaman
Μ	= matriks simpangan massa sebelum dan
	sesudahnya
mx my mz	= beban akselerasi

 $\ddot{u}gx,\ddot{u}gy,\ddot{u}gz = komponen percepatan tanah seragam$

Untuk sistem struktur rangka pemikul momen didapatkan batasan simpangan antar lantai tingkat sesuai SNI 1726-2019, pasal 7.1.1 adalah sebagai berikut:

 $\Delta a = 0.02.hsx$

Yaitu, hsx = Jumlah ketinggian lantai

Performance Based Design

Mengacu pada FEMA-273 (1997) yang menjadi acuan klasik bagi perencanaan berbasis kinerja maka kategori level kinerja struktur adalah:

- 1. Operasional (O)
- 2. Immediate Occupancy (IO)
- 3. Life Safety (LS)
- 4. Collapse Prevention (CP)

Analisa Statik Nonlinear (*Pushover Analisys*)

Analisis pushover hanya melibatkan pembebanan statik monotonik.

1. Metode Koefisien Perpindahan (FEMA 356)

Penyelesaian dilakukan dengan memodifikasi respon elastis linear dari sistem SDOF ekivalen dengan faktor C0, C1, C2 dan C3 sehingga dapat dihitung target perpindahan (δt).

Gambar 2. Perilaku Pasca Leleh Sistem Struktur 2. Metode Spektrum Kapasitas (ATC 40)

Hasil analisis statis *pushover* nonlinear adalah kurva pushover yang menunjukkan hubungan antara gaya geser dasar (*base shear*) dan simpangan atap (*roof displacement*) hubungan tersebut dinamakan kurva kapasitas struktur.

Gambar 3. Modifikasi Kurva Kapasitas menjadi Spektrum Kapasitas

2. METODE

Adapun alur dalam penelitian ini adalah sebabagai berikut ini :

Gambar 4. Diagarm alir studi

3. HASIL DAN PEMBAHASAN

Gambar 8. Denah Tumpuan Model 3

Gambar 12. Denah Tumpuan Model 7

Preliminary Design

Pada *preliminary design* balok perlu diketahui Panjang bentang balok dan perletakan balok yang nantinya akan didesain.

Jenis	Kategori	Bentang	Tinggi	Lebar
		(mm)	(mm)	(mm)
B1	Perletakan	11000	700	500
	Sederhana			
B2	Perletakan	9000	600	400
	Sederhana			
B3	Perletakan	7000	500	400
	Sederhana			
BA	Perletakan	4500	300	200
	Sederhana			

Tabel 1. Rekapitulasi Preliminary Balok

Pada *preliminary design* pelat, pelat akan diasumsikan terlebih dahulu.

Asumsi awal tebal pelat yaitu 120 mm.

$$lb = \frac{1}{12} \cdot 40.60^3 = 720000 \ cm^4$$

$$ls = \frac{1}{12} \cdot 420.12^3 = 60480 \ cm^4$$

$$\alpha fm = \frac{lb}{ls} = \frac{720000}{60480} = 11,905$$

Karena $\alpha fm > 2$ maka digunakan rumus sebagai berikut:

$$h = \frac{ln(0.8 + \frac{fy}{1400})}{26 + 0.02}$$

$$h = \frac{36 + 9\beta}{36 + 9\beta}$$

$$l_n = 4500 - 200 - 100 = 4200$$

$$h_{min} = \frac{l_n \left(0.8 + \frac{fy}{1400}\right)}{36 + 9\beta}$$

$$= \frac{4200(0.8 \frac{420}{1400})}{36 + 9 \frac{4500}{3750}} = 111,59 \, mm$$

h = 120 mm > 90 mmMaka digunakan tebal pelat 130 mm

Pada preliminary de	sign ko	lom dik	etahui hasil dari
perhitungan masing-masin	ng kolon	n adalah	sebagai berikut :
- Kolom interior	= 95/95	5 cm	
- Kolom eksterior	= 80/80	0 cm	
Analisa Pembebanan			
a. Beban mati			
Beban mati tambahan	pada pel	lat lantai	
Berat keramik	=	0,24	kN/m ²
Berat Spesi	=	0.21	kN/m ²
Berat plafon	=	0,071	kN/m ²
Berat MEP	=	0.25	kN/m ²
Total	=	0,771	kN/m ²
Beban mati tambahan	pada pel	lat dak	
Berat plafon	=	0.071	l kN/m ²
Berat MEP	=	0.25	kN/m ²
Waterproofing	=	0.05	kN/m^2
Total	_	0.371	kN/m^2
Beban nada Dinding	_	0,571	
Dinding lantai 1	_	13.7	25 kN/m
Dinding lantai 7	_	12,7	5 kN/m
Dinding lantai 5-12	_	10.6	525 kN/m
b Beban hidun	—	10,0	25 KIN/III
V.	_	1	
KLL Am	_	1 61 280	m^2
Agumai Bahan	_	01.209	kN/m^2
Rumah Sakit	_	2,07	K1 \/ 111
Kuman Saku I	_	2 34	
L Check Limiteri	_	2.34	
$L \ge 0, \exists . L_0$	OV		
$2,34 \geq 1.15$	-	0.06	$1 \text{N}/m^2$
Asuilisi	-	0,90	K1N/111
Lentei			
Lainai			
Ацар	_	1000 /	$25 m^2$
AT D1	_	1009,	2.5 111
$\frac{KI}{Letult \Lambda = 1990.25}$	$=$ $m^2 > 55$	0,0	
E = 0 < 1 make B2	$III \geq 55$,/4 111	
F = 0 < 1, maka KZ	= 1		
$L = L_0 \cdot K_1 \cdot K_2$ $L = 0 \cdot \Gamma T (1 - N - 1)^2$			
$L = 0.576 \text{ kN/m}^2$			
Check Limitasi			
0,58 < L < 0,96	T 2	1 1 1	
Karena L = $0.5/6$ Kr	N/m^2 , ma	aka diam	bil limitasi
minimum yaitu 0,58	kN/m ²	•	
Beban Hidup yang d	iigunkan	an yaitu:	LN1 / 2
Ruang operasi, labor	ratorium	= 2,87	KN/m^2
Ruang pasien		= 1,92	KN/m ²
c. Beban gempa			
SE (Tanah Lunak)			
Ss = 0,7142			

S1 = 0,3145Fa = 1,357

Gambar 14. Grafik Simpangan Struktur *Fixbase* **Perencanaan Elemen Desain Beton Bertulng**

a. Desain pelat

1) Kuat Geser Arah X Vu = 49,31 kN $\Phi Vc = 0,75. (0,17.\lambda.\sqrt{fc'}.b.d)$ $\Phi Vc = 0,75. (0,17.1.\sqrt{35}.1000.93,5)$ $\Phi Vc = 70527 N$ $\Phi Vc = 70,527 kN > Vu = 49,31 \rightarrow \text{OK}$ 2) Kuat Geser Arah Y Vu = 44,62 kN $\Phi Vc = 0,75. (0,17.\lambda.\sqrt{fc'}.b.d)$ $\Phi Vc = 0,75. (0,17.1.\sqrt{35}.1000.80,5)$ $\Phi Vc = 60,721,2 N$ $\Phi Vc = 60,7212 kN > Vu = 44,62 \rightarrow \text{OK}$ Digunakan jarak tulangan sengkang pada daerah tumpuan dan lapangan arah x dan arah y yaitu Ø13-100.

b. Desain Balok

Rekapitulasi penulangan balok

Tabel 2. Rekpitulasi penulangan balok

	Tulangan		Sengkang	
Jenis Balok	Tumpuan	Lapangan	Tumpuan	Lapangan
B1	9-D28	5-D28	3D13-100	3D13-150
B2	7-D28	5-D28	3D13-100	3D13-150
B3	7-D28	5-D28	3D13-100	3D13-125
BA	5-D25	5-D25	3D13-100	3D13-150

c. Desain Kolom

Dari hasil Analisa pada perhitungan diatas, diperoleh hasil sebagai berikut :

- Kolom Interior 1200/1200 mm.

- Tulangan utama 36D32.
- Tulangan sengkang daerah Tumpuan 4D13-150.

- Tulangan sengkang daerah Lapangan 4D13-150.

Dari hasil Analisa pada perhitungan diatas, diperoleh hasil sebagai berikut :

- Kolom Interior 1000/1000 mm.
- Tulangan utama 28D32.
- Tulangan sengkang daerah Tumpuan 4D13-150.
- Tulangan sengkang daerah Lapangan 4D13-150.

Gambar 15. Diagram interaksi kolom interior Perencanaan System Seismic Isolation

Setelah dilakukan analisa pada *ETABS* didapatkan nilai terbesar pada kombinasi 6e. 1.2DL +1LL +0.39Qex +1.3Qey + 0.26.SDS.DL. dan diketahui bahwa nilai *joint rection* pada setiap tumpuan nilai terbesar adalah 11816,1253 kN. Maka digunakan *system seismic isolation* dengan *outer* diameter = 1000 mm, dengan *nominal long term column load* = 11800 kN.

Didapatkan Nilai Pu Kolom yang ditinjau pada Model 1 Tabel 3. Nilai Pu Kolom Model 1

a.	Grid		
Story	3-I	4-I	
1	8624.37	8932.49	
2	7626.42	7939.48	
3	6723.51	6990.88	
4	5843.02	6071.54	
5	5034.79	5227.68	
6	4245.24	4401.37	
7	3475.8	3596.71	
8	2712.66	2802.92	
9	2016.37	2080.49	
10	1382.56	1426	
11	779.254	809.458	
12	294.723	313.199	

Didapatkan Nilai M3- Kolom yang ditinjau pada Model 1 Tabel 4. Nilai M3- Kolom Model 1

Story	Grid		
Story	3-I	4-I	
1	0	0	
2	73.8734	120.289	
3	584.829	618.583	
4	463.152	491.658	
5	478.972	531.005	
6	461.144	507.49	
7	386.971	425.479	
8	303.023	335.158	
9	196.863	224.667	
10	106.998	129.108	
11	14.8072	31.4254	
12	126.291	137.819	

Didapatkan Nilai M3- Balok yang ditinjau pada Model 1 Tabel 5. Nilai M3- Balok Model 1

Story	М3-		
Tumpuan		Lapangan	
1	1607.62	692.032	
2	1319.01	545.116	
3	1208.64	497.303	
4	1076.82	435.835	
5	977.747	382.655	
6	895.292	343.08	
7	816.943	306.003	
8	709.239	259.926	
9	590.314	208.365	
10	471.967	155.828	
11	355.882	109.94	
12	250.008	94.2716	

Didapatkan Nilai M3+ Balok yang ditinjau pada Model 1 Tabel 6. Nilai M3+ Balok Model 1

Storm	M3		
Story	Lapangan	Tumpuan	
1	825.075	1259.29	
2	656.065	1019.81	
3	593.879	928.758	
4	528.468	822.532	
5	470.028	726.655	
6	423.756	656.421	
7	375.716	587.646	
8	319.4	508.45	

Gambar 16. Grafik Perbandingan Model 0 dan Model 1

Gambar 17. Grafik Perbandingan Simpangan Tiap Model Arah X

Gambar 18. Grafik Perbandingan Simpangan Tiap Model Arah Y

Gambar 19. Grafik Pu Kolom Tiap Model

Gambar 22. Grafik M3+ Balok Tiap Mo Kurva Kapasitas

Kurva Kapasitas Model 1

Dari hasil *analysis pushover* dengan program *ETABS* didapatkan 3 *Step* pola beban dorong yang diberikan pada struktur hingga mengalami keruntuhan. Dari 3 *step* tersebut didapat grafik hubungan gaya dan perpindahan struktur yang menggambarkan kapasitas struktur dalam berdeformasi.

Tabel 7. Nilai Base Shear vs Monitored DisplacementModel 1.

Step	0	1	2	3
Displacement (mm)	0	-37.61	-261.9	-268.1
Base Force (kN)	0	7069	30196	30704
A-B	2934	2930	2222	2214
B-C	0	4	712	719
C-D	0	0	0	1
D-E	0	0	0	0
>E	0	0	0	0
A-IO	2934	2934	2578	2568
IO-LS	0	0	317	321
LS-CP	0	0	39	45
>CP	0	0	0	0
Total	2934	2934	2934	2934

Gambar 23. Kurva kapasitas Model 1

Dari gambar diatas dapat dilihat hubungan gaya dan perpindahan yang diberikan pada struktur pada masingmasing step. Dari gambar tersebut diketahui bahwa terjadi proses plastifikasi pada sendi plastis elemen struktur. Kondisi plastifikasi yang terjadi pada sendi plastis strktur memiliki tingkatan.

Gambar 24. Plastifikasi Struktur Hasil *Analysis Pushover Step* 1 Model 1

Step 1 menunjukkan bahwa struktur telah mengalami pasca elastis awal yaitu ditanda dengan munculnya sendi plastis dengan level A-B dengan deformasi sebesar 40,0975 mm dan gaya geser dasar sebesar 7935,0304 kN.

Gambar 25. Plastifikasi Struktur Hasil Analysis Pushover Step 2 Model 1

Step 2 menunjukkan bahwa struktur telah mengalami pasca elastis awal yaitu ditanda dengan munculnya sendi plastis

dengan level A-B dan B-C dengan deformasi sebesar 258,061 mm dan gaya geser dasar sebesar 32549,594 kN.

Gambar 26. Plastifikasi Struktur Hasil Analysis Pushover Step 3 Model 1

Step 3 menunjukkan bahwa struktur telah mengalami pasca elastis awal yaitu ditanda dengan munculnya sendi plastis dengan level A-B dan B-C dengan deformasi sebesar 258,097 mm dan gaya geser dasar sebesar 32552,81 kN.

Gambar 31. Grafik Perbandingan Kurva Kapasitas Tiap Model

4. KESIMPULAN

Berdasarkan hasil analisis yang telah dilakukan, maka dapat diambil kesimpulan sebagai berikut:

1. Berdasarkan kurva diatas dapat dilihat bahwa nilai displacement dengan adanya *System Seismic Isolation* nilai perpindahan pada Base semakin besar jika dibandingkan dengan struktur fixbase, semakin banyak penggunaan *System Seismic Isolation* pada struktur maka nilai perpindahan semakin besar dan jika penggunaan *System Seismic Isolation* pada struktur sedikit maka nilai perpindahan pada Base semakin kecil.

2. Berdasarkan hasil analisis dari Software ETABS dapat dilihat pada grafik bahwa nilai Pu Kolom dengan penggunaan *System Seismic Isolation* nilainya lebih besar dari Pu Kolom fixbase, dan jika penggunaan tumpuan jepit lebih banyak dari penggunaan *System Seismic Isolation* pada struktur maka nilai semakin kecil dari struktur fixbase.Untuk nilai momen kolom didapatkan jika dengan adanya penggunaan *System Seismic Isolation* pada struktur maka nilai momen lebih kecil dari struktur fixbase. Dan untuk momen pada balok tumpuan maupun lapangan dapat dilihat pada grafik bahwa nilai momen yang terjadi pada balok struktur *System Seismic Isolation* semakin besar dari struktur fixbase.

3. Kurva Kapasitas pada struktur fixedbase dan beberapa model struktur *System Seismic Isolation* sebagai berikut:

Pada struktur fixedbase didapatkan hasil pada level kinerja B-C. Pada struktur Base Isolator model 1 didapatkan hasil pada level kinerja B-C. Pada struktur Base Isolator model 2 didapatkan hasil pada level kinerja B-C. Pada struktur Base Isolator model 3 didapatkan hasil pada level kinerja B-C. Pada struktur Base Isolator model 4 didapatkan hasil pada level kinerja D-E. Pada struktur Base Isolator model 5 didapatkan hasil pada level kinerja D-E. Pada struktur Base Isolator model 6 didapatkan hasil pada level kinerja B-C. Dapat dilihat pada grafik perbandingan nilai kurva kapasitas bahwa struktur dengan penggunaan *System Seismic Isolation* nilai perpindahan lebih besar dari struktur fixbase.

5. DAFTAR PUSTAKA

- Badan Standarisasi Nasional. (2020). Beban Desain Minimum Dan Kriteria Terkait Untuk Bangunan Gedung Dan Struktur Lain. SNI 1727:2020.Jakarta.
- [2] Badan Standarisasi Nasional. (2019). Perencanaan Ketahanan Gempa Untuk Struktur Bangunan Gedung Dan Nongedung. ¬SNI 1726:2019.Jakarta.
- [3] Badan Standarisasi Nasional. (2019). Persyaratan Beton Struktural Untuk Bangunan Gedung Dan Penjelasan. SNI 2847:2019.Jakarta.
- [4] Pudji Rahardjo, I., Tajunnisa, Y., Komara, I., Nurry Arifa, G., & Imam Wahyudi, D. (2023). Performance of High-Damping Rubber Bearings for Seismic Isolation-Case Study of Nayumi Sam Tower Malang Apartment. In The Journal of Engineering (Vol. 9, Issue 3).
- [5] Arifin, T., & Desmaliana, E. (2021). Analisis Pushover terhadap Variasi Penempatan High Damping Rubber Bearing (HDRB) pada Struktur Gedung Bertingkat. Journal of Sustainable Construction, 1(1), 11–20.
- [6] Cimellaro, G. P. (n.d.). Lecture Notes in Civil Engineering Seismic Isolation, Energy Dissipation and Active Vibration Control of Structures 17th World Conference on Seismic Isolation (17WCSI).

- [7] Naeim, F., & Kelly, J. M. (1999). Design of Seismic Isolated Structures: From Theory to Practice.
- [8] Syahnandito, Suryanita, R., & Ridwan. (2020). Pengaruh Penggunaan Base Isolation High Damping Rubber Bearing Pada Struktur Beton Bertulang. Siklus: Jurnal Teknik Sipil, 6(2), 181–194.
- [9] Kelly, J. M., Konstantinidis, D. A., & Konstantinidis, K. (n.d.). MECHANICS OF RUBBER BEARINGS FOR SEISMIC AND VIBRATION ISOLATION RED BOX RULES ARE FOR PROOF STAGE ONLY. DELETE BEFORE FINAL PRINTING. MECHANICS OF RUBBER BEARINGS FOR SEISMIC AND VIBRATION ISOLATION.
- [10] Nathalia, S., Sugihardjo, H., & Basshofi, A. (2023). Modifikasi Perencanaan Struktur Gedung Palang Merah Indonesia Kabupaten Sukabumi Menggunakan Sistem Base Isolation Tipe High Damping Rubber Bearing (HDRB). Jurnal Teknik ITS Vol.12, No.2.
- [11] Budiono, B., Setiawan, A. (2014). Studi Komparasi Sistem Isolasi Dasar High Damping Rubber Bearing dan Friction Pendulum System Pada Bangunan Beton Bertulang. Jurnal Teknik Sipil Vol.21 No.3.
- [12] FEMA 356. (2000). Prestandart and Commentary for The Seismic Rehabilitation of Building.
- [13] Naeim, F., Kelly, J M. (1999). Design of Seismic Isolated Structures: From Theory to Practice.
- [14] Kelly, Trevor E. (2001). Base Isolation of Structures.
- [15] Mamesah, Hizkia Yehezkiel., Wallah, Steenie E., Windah, Reky Stenly. (2014). Analisis Pushover pada Bangunan dengan Soft First Story. Jurnal Sipil Statik Vol.2 No.4
- [16] Bridgestone Corporation. (2017). Bridgestone Seismic Isolation Product Line-up..