Main Article Content

Abstract

Bangunan dengan lantai dasar yang lemah rentan mengalami beberapa kerusakan struktur, dan bahkan runtuh. Metode baru yang digunakan untuk mereduksi pengaruh beban siklis pada struktur kolom bangunan akibat gempa yang lebih tahan gempa dan efektif salah satunya adalah Sendi Plastis Beton Polimer untuk Kolom dengan Vinyl Ester Terhadap Beban Siklis. Sehingga, dapat dianalisa pengaplikasian sistem sendi plastis, respon dan kinerja, nilai rasio dan besaran simpangan lateral maksimum, beton polimer untuk kolom dengan vinyl ester terhadap beban siklis, serta perbandingan uji kolom yang diberi beton polimer pada sendi plastis dengan beton normal. Hasil penelitian, diperoleh : komposisi terbaik 43,52% vynil ester ; 1,52% mepoxe ; 0,65% cobalt ; 18,10% fly ash ; 36,20% pasir besi lumajang dengan berat jenis 1707,414 kg/m3, kuat tekan sebesar 135,73 MPa, kuat tarik sebesar 13,312 MPa, dan kuat lentur sebesar 5,288 MPa menggunakan metode precast. Tegangan puncak dari respon dan kinerja beton polimer vinyl ester H-10 sebesar 6 kN, H-15 sebesar 8,5 kN, H-20 sebesar 6 kN dan untuk beton normal sebesar 8 kN. Rasio dan nilai simpangan lateral maksimum pada spesimen H-10 sebesar 6% dan 92,67 mm, spesimen H-15 sebesar 7,6% dan 114,7 mm, dan spesimen H-20 sebesar 7,8% dan 116,64 mm. Perbandingan nilai tegangan puncak, rasio dan nilai simpangan lateral maksimum pada kolom normal dengan kolom yang diberi beton polimer pada spesimen H-10 75% dari tegangan puncak beton normal, 101,70% dari rasio lateral maksimum beton normal, 104,07% dari simpangan lateral maksimum beton normal, spesimen H-15 106,25% dari tegangan puncak beton normal, 128,81% dari rasio simpangan lateral maksimum beton normal, 128,80% dari simpangan lateral maksimum beton normal, spesimen H-20 75% dari tegangan puncak beton normal dan 132,20% dari rasio simpangan lateral maksimum beton normal, 130,98% dari simpangan lateral maksimum beton normal.

Keywords

beton bertulang, beton polimer, sendi plastis, vinyl ester

Article Details

References

  1. ASTM D 638 M Standard Test Method for Tensile Properties of Plastics (Metric). (1996). West Consholocken, Pennsylvania: ASTM International.
  2. ASTM D 7264/D 7264 M-21 Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials. (2021). West Conshohocken, Pennsylvania: ASTM International.
  3. Atmojo, S., & Muhandis, I.,2019, Sistem Informasi Geografis Bencana Gempa Bumi Dengan Pendekatan Pga Untuk Mitigasi Bencana, Jurnal Ilmiah Edutic, 6(1), 10–14.
  4. Bakshi Uday A., Ajay V. Bakshi, Kshiteeja Bakshi, 2008, Eelctrical Measurements, ISBN 81 - 8431 - 244 - X, India.
  5. Bentley John P, 2005, Principles of Measurement System, ISBN 0 130 43028 5, London.
  6. Blaga, A., dan Beaudoin, J. J., 1985, Polymer Concrete, Canadian Building Digest published.
  7. Forsdyke, K. L., & Starr, T. F., 2002, Thermoset Resins: Market Report, Shropshire, United Kingdom: Rapra Technology Limited.
  8. Fraden, Jacob, 2005, Handbook of Modern Sensors, ISBN 978-3-319-19303-8, London.
  9. Gerard J. O'Reilly., dan Gian Michele Calvi, 2018, Conceptual seismic design in performance‐based earthquake engineering, Scuola Universitaria Superiore IUSS, Pavia, Italy.
  10. Iwan, W. D, 1966, A Distributed-Element Model for Hysteresis and Its Steady-State Dynamic Response, Journal of Applied Mechanics, 33(4), 893–900. https://doi.org/10.1115/1.3625199.
  11. Izzuddin, B., Vlassis, A., Elghazouli, A., & Nethercot, D, 2008, Progressive collapse of multi-storey buildings due to sudden column loss—Part I: Simplified assessment framework. Engineering structures, 30(5), 1308-1318.
  12. JorgeRuiz-García, & OctavioDomínguez-Solórzano,2021, Collapse strength ratios for weak first-story buildings under soft soil intraslab earthquakes. Soil Dynamics and Earthquake Engineering Volume 151, 107004. https://doi.org/10.1016/j.soildyn.2021.107004
  13. Khan, M., 2010, Bridge and Highway Structure Rehabilitation and Repair. ISBN: 978-0071545921.
  14. McNally, T., Murphy, W. R., Lew, C. Y., Turner, R. J., & Brennan, G. P. (2003). Polyamide-12 layered silicate nanocomposites by melt blending. Polymer, 44(9), 27612772.
  15. Metelli Giovanni, Consuelo Beschi, Paolo Riva, 2014, Cyclic Behaviour of a Column to Foundation Joint for Concrete Precast Structures, University of Brescia, Italy.
  16. Mikhailov, K. V., et. al., 1992, Polymer Concrete and Their Structural Uses, Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi, No. 1, pp. 311-317.
  17. Paz, Mario. and Young Hoon Kim., 2019. Structural Dynamics Theory and Computation Sixth Edition. Springer Nature, Switzerland. ISBN 978-3-319-94743-3
  18. Paul, C. V. and E. (n.d.), Performance of Epoxy and Polyester Polymer Concrete, ACI Materials Journal, 87(3). https://doi.org/10.14359/2187.
  19. Ratna, D., 2009, Handbook of Thermoset Resins. Shropshire, United Kingdom: iSmithers.
  20. Saptonowati, H., & Payogo, K., 2015, Analisis Gempa pada Struktur Gedung Iradiator Gamma Kapasitas 2 Mci Hasriyanti, Jurnal Perangkat Nuklir, 09(1978), 80–90.
  21. SNI 1726, 2019 Tatacara Perencanaan Ketahanan Gempa Untuk Struktur Rumah dan Gedung, Badan Standarisasi Nasional.
  22. SNI 2847, 2019, Persyaratan Beton Struktural untuk Bangunan Gedung, Badan Standarisasi Nasional.
  23. Taranath, Bungale, S., 2009, Reinforced Concrete Design of Tall Buildings, ISBN 978-1-4398-0480-3 (alk. paper) .
  24. Tenda, Gladys Hestika Kalalo Ruddy Tenda, dan Servie O. Dapas, 2014, Pengaruh eksentrisitas Pusat Massa Bangunan Beton Bertulang Terhadap Respons Struktur Akibat Beban Gempa, Fakultas Teknik, Jurusan Teknik Sipil, Universitas Sam Ratulangi, Manado.
  25. Vagelis Plevris, Georgia Kremmyda, dan Yasin Fahjan, 2017, Performance-Based Seismic Design of Concrete Structures and Infrastructures, Engineering Science Reference (an imprint of IGI Global) 701 E. Chocolate Avenue Hershey PA, USA.
  26. Vigolo, B., Pénicaud, A., Caulon, C., Sauder, C., Pailler, R., Journet, C., . . . Poulin, P, 2000, Macroscopic fibers and ribbons of oriented carbon nanotubes, Science, 290(5495), 1331-1334.