

Pengaruh Kedalaman Anoda pada Metode *Contact Glow Discharge Electrolysis* (CGDE) dalam Degradasi Pewarna Tekstil *Remazol Red*

Dian Ratna Suminar^{1,*)}, Nelson Saksono²

¹Department of Chemical Engineering, Faculty of Engineering, Politeknik Negeri Bandung, Indonesia ²Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Depok, Indonesia

*E-mail: dian.yayang86@gmail.com

ABSTRAK

Limbah pewarna tekstil yang mempunyai komponen utamanya zat pewarna sintesis berbahaya bagi lingkungan sekitar. Pengolahan limbah pewarna tekstil secara fisika dan biologi kurang efektif. Elektrolisis plasma dengan menggunakan metode *Contact Glow Discharge Electrolysis* (CGDE) merupakan bagian dari pengolahan secara kimiawi, yang efektif dalam mengolah limbah pewarna batik. Parameter kedalaman anoda sangat mempengaruhi dalam proses elektrolisis plasma metode CGDE. Tujuan penelitian ini adalah untuk mengetahui pengaruh kedalaman anoda terhadap produksi •OH, energi yang digunakan proses degradasi, persen dekolorisasi *Remazol Red RB 133*, serta mengetahui penurunan konsentrasi COD limbah pewarna batik *Remazol Red RB 133*. Kedalaman anoda dalam penelitian ini adalah 1,5 cm dimana produksi •OH sebesar 11,63 mmol dan energi proses selama 30 menit adalah 806,4 KJ. Persen dekolorisasi *Remazol Red RB 133* pada konsentrasi 250 ppm, terbesar selama 30 menit mencapai 99,66 %, pada kedalaman 4,5 cm dengan energi 1075,212 KJ. Nilai COD limbah pewarna batik *Remazol Red RB 133* menurun dari 169 mg/L menjadi 3,6 mg/L setelah proses CGDE selama 180 menit (sesuai dengan baku mutu limbah).

Kata kunci: CGDE, degradasi limbah pewarna tekstil, radikal hidroksil, plasma

ABSTRACT

Textile dye waste having the main component of synthetic dye is hazardous to the surrounding environment. Textile dye waste treatment is physically and biologically less effective. Electrolysis plasma that used Contact Glow Discharge Electrolysis (CGDE) method is part of chemical treatment. The anode depth parameters greatly affect the electrolysis CGDE method. The purpose of this study was to determine the effect of anode depth on • OH production, the energy used in the degradation process, percent decolorization of Remazol Red RB 133, as well as knowing the decrease in COD concentration of Remazol Red batik dye RB 133. The anode depth in this study is 1.5 cm where the production of OH • 11.63 mmol and the processing energy for 30 minutes is 806.4 KJ. The largest Percentage degradation of *Remazol Red RB 133* at concentration 250 ppm is 99,66%, that's reach at depth 4.5 cm for 30 minutes with energy 1075,212 KJ. COD value has decreased from 169 mg/L to 3,6 mg/L after 180 minutes CGDE process (conform to waste quality standards).

Keywords: CGDE, degradation of textile dye waste, hydroxyl radicals, plasma

1. PENDAHULUAN

Limbah pewarna batik mengandung bahanbahan kimia yang cukup kompleks dan sulit untuk didegradasi, seperti minyak, pelarut, dan juga pewarna komponen organik [1]. Limbah pewarna merupakan komponen organik yang bersifat toksik, tidak dapat

Corresponding author: Dian Ratna Suminar Departement of Chemical Engineering Politeknik Negeri Bandung, Bandung, Indonesia E-mail: dian.yayang86@gmail.com terurai secara alami dan mempunyai struktur aromatik yang komplek [2,3].

Pengolahan secara elektrolisis plasma merupakan bagian dari pengolahan kimia, yang lebih efektif dan efisien dalam hal persentase degradasi serta waktu proses. *Contact Glow Discharge Electrolysis* (CGDE) adalah salah satu metode elektrolisis

> Diterima: 24 Agustus 2018 Disetujui: 08 Oktober 2018 © 2018 Politeknik Negeri Malang

plasma, yang dihasilkan oleh arus searah (DC) antara elektroda dan permukaan elektrolit disekitarnya. CGDE bermula dari elektrolisis biasa (Faraday). Setelah elektrolisis Faraday berlangsung, tegangan operasi ditingkatkan menjadi sangat tinggi hingga terbentuk plasma. Plasma merupakan terionisasi akibat lucutan gas yang elektromagnetik dan menghasilkan radikal hidroksil (•OH) dengan jumlah yang banyak [4].

Senyawa •OH dari proses CGDE merupakan oksidator kuat dan dapat menguraikan molekul-molekul polutan organik. •OH bersifat sangat reaktif, sehingga mudah bereaksi baik dengan senyawa lain maupun dengan sesamanya membentuk H₂O₂. Waktu tinggal •OH dalam reaktor sangat singkat, yaitu 3,7x10⁻⁹ detik [5]. Hal ini mengakibatkan peluang reaksi antara •OH dengan polutan berkurang.

Produksi •OH serta interaksi antara •OH dengan limbah mempengaruhi efektivitas CGDE dalam mendegradasi limbah [6,7]. Penambahan garam besi dalam sistem plasma mampu mengoptimumkan efektivitas menggunakan prinsip reaksi Fenton yaitu proses penguraian H_2O_2 menjadi •OH oleh ion Fe²⁺ [8].

Salah satu parameter penting dalam degradasi limbah menggunakan metode elektrolisis plasma adalah kedalaman anoda. menambah kedalaman dapat Dengan meningkatkan degradasi limbah. Namun demikian luas permukaannya akan meningkat, sehingga konsumsi energi akan meningkat pula. Oleh karena itu diperlukan suatu desain untuk menekan peningkatan konsumsi energi, yaitu melalui pelapisan anoda menggunakan kaca pyrex.

Limbah pewarna yang digunakan dalam penelitian ini adalah *Remazol Red RB 133*. *Remazol Red RB 133* merupakan zat warna reaktif yang mengandung gugus kromofor azo. Gugus kromofor senyawa azo bersifat karsinogenik dan sulit diuraikan yang

memberikan dampak negatif bagi lingkungan sekitar. Rumus molekul *Remazol Red RB 133* adalah $C_{27}H_{18}O_{16}N_7S_5Na_4Cl$, berat molekul 984,2 g/mol, dan kelarutan dalam air 70 g/L pada suhu 293⁰K [14]. Pada Gambar 1 berikut ini adalah struktur kimia dari *Remazol Red*.

Gambar 1. Struktur molekul kimia *Remazol Red RB-133* [14].

Chemical Oxygen Demand (COD), adalah oksigen dalam mg O₂, yang dibutuhkan dalam proses oksidasi senyawa-senyawa organik dalam 1 liter sampel air [12]. Dalam proses degradasi limbah, data *Chemical Oxygen Demand* (COD) adalah salah satu data pendukung yang menentukan limbah *Remazol Red RB 133* telah terdegradasi.

2. METODE PENELITIAN

Tahap penelitian diawali dengan rancang bangun reaktor CGDE dan dilanjutkan dengan pengambilan, pengolahan data, dan pembuatan laporan.

Tabel 1. Variabel penelitian dalam ujiproduksi •OH

Variabel	Pengaruh Kedalamar	1
	Anoda	
Bebas	0,5 cm, 1,5 cm, 2,5 cm	
Terikat	Produksi •OH, konsums	i
	energi	
Tetap	1. Tegangan 600 V	
	2. Konsentrasi larutan	
	elektrolit 0,02M	
	3. Kecepatan pengadukan	
	200rpm	
	4. Temperatur 55 ⁰ C	

2.1. VARIABEL PROSES

Pada penelitian ini, variabel proses yang berpengaruh dalam degradasi limbah pewarna batik Remazol Red RB 133 tersaji dalam tabel 1 dan 2.

Tabel 2. Variabel penelitian dalam uji degradasi pewarna

Variabel	Pengaruh Kedalaman							
	Anoda							
Bebas	0,5 cm, 1,5 cm, 2,5 cm							
Terikat	Persentase degradasi							
	limbah pewarna batik,							
	konsumsi energi							
Tetap	1. Tegangan 600 V							
	2. Konsentrasi larutan							
	elektrolit 0,02M							
	3. Kecepatan pengadukan							
	200rpm							
	0							

4. Temperatur 55^oC

2.2. BAHAN

Pada penelitian ini, larutan elektrolit yang digunakan adalah Na₂SO₄ dan menggunakan pewarna sintesis Remazol Red RB133, dengan aquadest untuk pengenceran. Perhitungan produksi •OH, menggunakan H₂SO₄ 0,02M, Na₂SO₃ 0,02M, indikator amilum.

2.3. ALAT

Reaktor yang digunakan dalam penelitian ini adalah reaktor CGDE, yang diadopsi dari desain reaktor Contact Glow Discharge Electrolysis (CGDE) dengan menggunakan 1 buah anoda [9]. Reaktor yang digunakan dalam penelitian ini ditunjukan pada Gambar 2, sebagai berikut:

Gambar	2 Skema	diagram	reaktror	CGDE	untuk p	engolahan	limbah	pewarna	Remazol	Red
RB-133										

- 1. MCB
- 6. Anoda 7. Katoda
- 3. Travo
- 4. Dioda bridge
- 8. Termometer
- 9. Lubang Sampel
- 5. Multimeter

2. Slide Regulator

- 13. Pompa
 - 14. Air Pendingin

12. Stirer

11. Magnetic Stirer

10. Limbah pewarna 15. Aliran udara masuk

2.3. PROSEDUR PENELITIAN

- Merancang bangun reaktor CGDE dengan penambahan injeksi gelembung udara dan pelapisan anoda dengan kaca pyrex.
- Mengkarakterisasi arus dan tegangan dilakukan untuk mengetahui rentang tegangan pada proses elektrolisis plasma dengan dan tanpa injeksi gelembung udara.
- Menguji produksi •OH dan pengukuran konsumsi energi dilakukan pada variabel kedalaman anoda.
- Menguji degradasi limbah pewarna batik *Remazol Red RB 133*, dilakukan pada variabel kedalaman anoda.
- Menganalisis chemical oxygen demand (COD), dilakukan pada limbah pewarna batik Remazol Red RB 133 250 ppm pada kedalaman anoda yang optimum. Pengukuran COD dilakukan dengan menggunakan metode close reflux, lalu di ukur dengan menggunakan alat spektrofotometri.

3. HASIL DAN PEMBAHASAN

3.1 PENGARUH KEDALAMAN ANODA TERHADAP KURVA KARAKTERISTIK ARUS-TEGANGAN VARIASI KEDALAMAN

Profil kurva karakteristik arus-tegangan pada kedalaman 1,5 cm dan temperatur 55^{0} C ditunjukan pada Gambar 3. Dari kurva karakteristik arus-tegangan pada Gambar 3 menunjukan masing-masing kurva terbagi menjadi tiga zona, yaitu zona *ohmic* (0<V<V_B), zona *transisi* (V_B<V<V_D), dan zona *glow discharge* (V>V_D) [10].

Pada zona *ohmic*, ditandai dengan arus meningkat sebanding dengan peningkatan tegangan yang digunakan. Pada zona ini terjadi elektrolisis konvensional (Elektrolisis Faraday). Elektrolisis pada air ditandai dengan adanya gelembung-gelembung gas di sekitar anoda. V_B disebut sebagai *breakdown voltage*. V_B (*Breakdown Voltage*) pada zona *ohmic* adalah 280 volt. Arus yang dipakai dalam zona *ohmic* (I_B)adalah 1,194 A, sehingga energi yang digunakan dalam proses adalah 334,335 KJ/s.

Pada zona transisi, arus mulai menurun berbanding terbalik dengan peningkatan tegangan yang digunakan, yang dikarenakan terbentuknya selubung gas disekitar anoda yang mengakibatkan terjadinya pemecahan dan pembentukan gelembung udara sehingga menvebabkan arus menurun [15.2]. Banyaknya gelembung yang dihasilkan di anoda dapat mempengaruhi stabilitas zona ini, yang ditandai dengan semakin fluktuatifnya arus yang dihasilkan.

Pada zona *glow discharge*, arus mulai meningkat seiring dengan meningkatnya tegangan, dan plasma yang dihasilkan semakin terang. V_D (*Critical Voltage*) pada zona ini sebesar 540 volt. Arus yang dipakai dalam zona *glow discharge* (I_D) adalah 0.701 A, sehingga energi yang digunakan dalam proses adalah 378,804 KJ/s.

Perbandingan nilai V_B, I_B, V_D, I_D, dan energi pada proses CGDE dengan variasi kedalaman anoda ditunjukan pada Tabel 3 dan Gambar 4. Semakin besar kedalaman anoda maka dihasilkan V_B yang semakin besar. Hal ini dapat terjadi karena dengan bertambahnya kedalaman anoda yang tercelup yang digunakan maka mempunyai tekanan hidrostatik yang lebih besar [7]. Hal ini dikarenakan, gas memiliki gaya apung yang lebih besar sehingga selubung gas menjadi kurang stabil. Sehingga diperlukan energi yang lebih besar untuk menghasilkan selubung gas. Pada zona critical point, semakin dalam anoda yang tercelup dalam larutan elektrolit, yang digunakan dalam proses CGDE mempunyai V_D yang semakin besar. Arus (I_D) yang dihasilkan semakin besar apabila kedalaman anoda tercelup dalam larutan elektrolit nya semakin besar.

Gambar 3. Kurva karakteristik arus-tegangan pada kedalaman anoda 1,5 cm

Dengan bertambahnya kedalaman anoda yang tercelup yang digunakan maka mempunyai tekanan hidrostatik yang lebih

besar. Sehingga diperlukan energi yang lebih besar untuk pembentukan plasma.

Gambar 4. Kurva karakteristik arus-tegangan pada berbagai kedalaman anoda

Tabel 3. Perbandingan V_B , I_B , V_D , I_D , dan energi pada karakteristik proses CGDE variasi kedalaman anoda

No	Kedalaman –	Brea	akdown Po	oint	Critical Point			
		VB	IB	KJ/det	VD	ID	KJ/det	
1	0,5 cm	260	0,991	257,764	540	0,620	334,638	
2	1,5 cm	280	1,194	334,335	540	0,701	378,804	
3	2,5 cm	300	1,199	359,550	540	0,811	437,909	
4	4,5 cm	300	1,477	443,231	560	1,033	578,312	

3.2 PENGARUH KEDALAMAN ANODA TERHADAP PEMBENTUKAN •OH DALAM PROSES CGDE

CGDE, parameter Pada proses vang menunjukan efektivitas yaitu dilihat dari produksi [•]OH, dan konsumsi energi. Pada degradasi limbah dengan proses menggunakan metode CGDE, •OH merupakan oksidator kuat yang akan bereaksi menguraikan molekul-molekul polutan organik. •OH bersifat sangat reaktif. sehingga mudah bereaksi baik dengan senvawa lain maupun dengan sesama [•]OH membentuk H₂O₂. Waktu tinggal •OH dalam reaktor sangat singkat, vaitu 3,7x10⁻⁹ detik [5]. •OH mempunyai sifat sangat tidak

stabil sedangkan H₂O₂ mempunyai sifat yang lebih stabil. Oleh karena itu, untuk menentukan produksi •OH dapat dihitung dengan cara mengukur konsentrasi H₂O₂ yang terbentuk [10]. Gambar 5, menunjukkan produksi •OH dalam berbagai variasi kedalaman anoda.

Semakin dalam anoda tercelup kedalam elektrolit, produksi •OH semakin besar [7]. Hal ini menunjukkan semakin dalam anoda tercelup maka interaksi plasma semakin baik sehingga degradasi semakin baik. Semakin dalam anoda tercelup, maka $H_3O^+_{(gas)}$ akan masuk ke zona bulk, sehingga dapat berinteraksi dengan baik dengan $H_2O_{(liq)}$ untuk membentuk •OH.

Gambar 5. Pengaruh kedalaman anoda terhadap produksi •OH

Pengaruh kedalaman terhadap jumlah energi ditunjukkan pada Gambar 6. Semakin dalam anoda tercelup maka energi nya semakin besar. Hal ini dapat terjadi karena dengan bertambahnya kedalaman anoda yang tercelup maka tekanan hidrostatiknya meningkat [7]. Hal ini dikarenakan, gas memiliki gaya apung yang lebih besar sehingga selubung gas menjadi kurang stabil. Sehingga diperlukan energi yang lebih besar untuk menghasilkan selubung gas.

Gambar 6. Pengaruh kedalaman anoda terhadap jumlah energi

3.3 PENGARUH KEDALAMAN ANODA TERHADAP PERSEN DEGRADASI REMAZOL RED RB 133 100 PPM

Proses degradasi *Remazol Red RB 133* dengan menggunakan metode CGDE, dengan memvariasikan kedalaman (1,5 cm, 2,5 cm, dan 4,5 cm). Pengambilan sampel dilakukan waktu 0, 3, 6, 8, 12, 16, 20, 25, dan 30 menit. Gambar 7, menunjukkan pengaruh kedalaman terhadap % degradasi *Remazol Red RB 133* 100 ppm. Semakin dalam anoda yang tercelup, maka % degradasi semakin besar. Hal ini sebanding dengan peningkatan produksi •OH dengan semakin dalam anoda tercelup dalam larutan elektrolit.

Pada proses CGDE ini menghasilkan •OH vang banyak dimana •OH adalah oksidator kuat yang mampu mendegradasi limbah organik [11]. Pada rentang menit ke- 0-3, efektifitas proses CGDE sangat tinggi, dapat dilihat dari % degradasi Remazol Red RB 133 meningkat signifikan. Dari menit ke-3 sampai menit ke-30 peningkatan % degradasi Remazol Red RB 133 tidak terlalu signifikan. Hal ini dikarenakan setelah menit ke-3. jumlah limbah Remazol Red RB 133 konsentrasi nya sedikit, sementara OH yang meniadi terbentuk lebih banvak berekombinasi membentuk H₂O₂ Sesuai dengan reaksi dibawah ini [5]:

•OH + •OH \longrightarrow H₂O₂

Gambar 7. Pengaruh kedalaman anoda terhadap persen degradasi *Remazol Red RB 133* 100 ppm

Gambar 8. Penurunan nilai COD degradasi *Remazol Red RB 133* 250 ppm pada kedalaman anoda 1,5 cm

3.4 ANALISIS CHEMICAL OXYGEN DEMAND (COD)

Pengukuran COD dilakukan pada limbah pewarna batik *Remazol Red RB 133* sebelum didegradasi dan setelah didegradasi. Periode pengambilan sampel adalah pada waktu ke: 0 menit, 30 menit, 60 menit, 90 menit, 120

menit, 150 menit, dan 180 menit. Gambar 8, menjelaskan penurunan nilai COD pada limbah pewarna batik *Remazol Red RB 133* konsentrasi 250 ppm, setelah didegradasi oleh proses CGDE dengan penambahan injeksi gelembung udara.

Gambar 8 menunjukan nilai COD sebelum didegradasi adalah 169 mg/L (diatas baku mutu limbah). Setelah proses degradasi selama 30 menit, nilai COD menurun secara vaitu 44.3 mg/L,signifikan. hal ini menunjukan bahwa pada proses degradasi pada 30 menit awal sangat efektif dan cepat. Nilai COD setelah proses degradasi selama 30 menit sudah dibawah baku mutu limbah [13]. Degradasi dilanjutkan sampai menit ke 180 menit, dengan nilai COD adalah 3,6 mg/L, nilai nya jauh dibawah baku mutu limbah

4. KESIMPULAN

Kedalaman anoda optimum dalam produksi metode dengan CGDE dengan •OH penambahan gelembung injeksi udara masing-masing adalah kedalaman 1,5 cm. Produksi •OH 11,63 mmol, dan energi proses 806,4 KJ. Presentase dekolorisasi Remazol Red RB 133 (konsentrasi 250 ppm) terbesar selama 30 menit mencapai 99,66% pada kedalaman 4,5 cm dengan energi 1075,212 KJ. Nilai COD limbah pewarna batik Remazol Red RB 133 menurun dari 169 mg/L menjadi 3,6 mg/L setelah proses CGDE selama 180 menit (sesuai dengan baku mutu limbah).

UCAPAN TERIMA KASIH

Penelitian ini sebagian didanai oleh Hibah Penelitian Berbasis Kompetensi, Kementrian Riset Teknologi dan Pendidikan Tinggi Republik Indonesia Tahun Anggaran 2018.

DAFTAR PUSTAKA

- [1] J. Gao, X.Wang, Z. Hu, H. Deng, J. Hou, X. Lu, J. Kang, Plasma Degradation Of Dyes In Water with Contact Glow Discharge Electrolysis, *Water Research*, vol. 37, hal. 267-272, 2003.
- [2] M. Marcuci, G. Ciardelli, A. Matteucci, L. Ranieri, M. Russo, Experimental Campaigns On Textile Wastewater For Reuse by Means of Different Membrane Processes, *Desalination*, vol. 149, hal. 137-143, 2002.
- [3] X. Wang, M. Zhou, X. Jin, Application of Glow Discharge Plasma For Wastewater Treatment, *Electrochimica Acta*, vol. 83, hal. 501-512, 2012.
- [4] N. Saksosno, I. Nugraha, M. Gozan, S. Bismo, Plasma Formation Energi And Hydroxyl Production On Contact Glow Discharge Electrolysis, *International Journal of Arts & Sciences*, vol. 07(03), hal. 71–77, 2014.
- [5] B. Jiang, J. Zheng, S. Qiu, M. Wu, Q. Zhang, Z. Yan, Q. Xue, Review On Electrical Discharge Plasma Technology For Wastewater Remediation, *Chemical Engineering Journal*, vol. 236, hal. 348-368, 2014.
- [6] N. Saksono, B. P. Adiwidodo, E. F. Karamah, S. Kartohardjono, Contact Glow Discharge Electrolysis System for Treatment of Wastewater Containing Ammonia, *Journal of Environmental Science and Technology*, vol. 6(1), hal. 41-49, 2013.
- [7] S. Bismo, K. Irawan, E. F. Karamah, N. Saksono, On The Production Of OH Radical Through Plasma

Electrolysis Mechanism For The Processing Of Ammonia Waste Water, *J. Chem. Chem. Eng*, vol. 7, hal. 6-12. 2013.

- [8] J. Gao, J. Yu, Q. Lu, X. He, W. Yang, Y. Li, L. Pu, Z. Yang, Decoloration of alizarin red S in aqueous solution by glow discharge electrolysis, *Dyes and Pigments*, vol. 76, hal. 47-52. 2008.
- [9] Y. Liu, D. Wang, B. Sun, X. Zhu, Aqueous 4-nitrophenol Decomposition and Hydrogen Peroxide Formation Induced by Contact Glow Discharge Electrolysis, *Journal of Hazardous Materials*, vol. 181, hal. 1010-1015, 2010.
- [10] X. Jin, X. Wang, J. Yue, Y. Cai, H. Zhang, The Effect of Electrolysis Constituents on Contact Glow Discharge Electrolysis, *Electrochimica Acta*, vol. 56, hal. 925-928, 2010.
- [11] J. Gao, J. Yu, Y. Li, X. He, L. Bo, L. Pu, W. Yang, Q. Lu, Z. Yang, Decoloration Of Aqueous Brilliant Green By Using Glow Discharge Electrolysis. *Journal of hazardous materials*, vol. 137, hal. 431-436, 2006.
- [12] L. Wang, Х. Jiang, Y. Liu, Degradation Of Bisphenol A And Formation Of Hydrogen Peroxide Induced By Glow Discharge Plasma In Aqueous Solutions. Journal of Hazardous Materials, vol. 154, hal. 1106-1114, 2008.
- [13] Peraturan Menteri Negara Lingkungan Hidup Nomor 05 Tahun 2014.
- [14] N. Saksono, I. Puspita, T. Sukreni, Application of Contact Glow Discharge Electrolysis Method for Degradation of Batik Dye Waste Remazol Red by The Addition of Fe²⁺

Ion, in: AIP Conference Proceedings 1823, 2017.

Q. Lu, J. Yu, J. Gao, W. Yang, Y. Li, [15] Glow-discharge Electrolysis Plasma Synthesis Induced of Polyvinylpyrrolidone/Acrylic Acid Hydrogel and its Adsorption Properties for Heavy-metal Ions, Plasma Processes and Polymers. in: 16th International Conference On Engineering, Plasma Surface in Garmisch-Pertenkirchen Germany, vol. 8(9), hal. 803-814, 2011.