Hydrophobic Support: A Phenomenon of Interface Lipase Activation in Polyurethane Foam as a Heterogeneous Biocatalyst in Synthesis of Natural Flavor Ester
DOI:
https://doi.org/10.33795/jtkl.v6i1.253Keywords:
lipase, hydrophibic support, interfacce activating, esterification, natural flavorAbstract
Biokatalis heterogen memerlukan penyangga yang sesuai melalui teknik imobilisasi enzim, terutama jika digunakan dalam industri makanan. Dalam sintesis perisa ester alami, busa poliuretan (PUF) dipilih sebagai penyangga imobilisasi lipase, karena memiliki sifat kaku inert, dan porositas tinggi. PUF perlu dilapisi dengan co-immobilized, yang terdiri dari campuran surfaktan yang aman yaitu gelatin, lecithin, PEG, MgCl2, sehingga menjadi satu kesatuan sebagai penyangga PUF hidrofobik. Interaksi hidrofobik antara lipase dan surfaktan pada PUF dapat memicu lipase yang mengaktifkan antarmuka untuk bereaksi lebih banyak dengan substrat melalui sisi aktifnya. Penelitian ini bertujuan untuk mempelajari kemampuan penyerapan PUF pada co-immobilized lipase sebagai biokatalis heterogen. Tahapan yang dilakukan adalah PUF direndam dalam co-immobilized dengan perbandingan 1:10; 1:20; 1:30 (b/b) selama 1-5 jam, kemudian dikeringkan, hasilnya direndam dalam lipase dan dikeringkan, menghasilkan biokatalis heterogen, hasil terbaik biokatalis heterogen diuji pada sintesis perisa ester alami. Hasil penelitian menunjukkan bahwa kondisi penyerapan surfaktan terbaik diperoleh selama 3 jam perendaman pada semua perbandingan PUF: co immobilized 1:10; 1:20; 1:30 (b/b) masing - masing 6,95 g/g; 23,54 g/g; 19,95 g/g, dan aktivitasnya berturut turut 2 U/g PUF; 5,86 U/g PUF; 3,34 U/g PUF. Hasil biokatalis heterogen terbaik pada rasio PUF: co immobilized 1:20 (b/b) diuji pada sintesis perisa alami melalui reaksi esterifikasi asam laurat dari minyak kelapa dan sitronelol dari minyak sereh, menghasilkan konversi 55% perisa alami citronellyl laurat.
Heterogeneous biocatalysts prepared through the enzyme immobilization technique require an appropriate carrier, especially if they are used in the food industry. In the synthesis of natural ester flavor, polyurethane foam (PUF) was chosen as the lipase immobilization carrier, because it has rigid properties, inert, and high porosity. Carrier PUF needs to be coated with a food-safe surfactant known as co-immobilized, consisting of a mixture of gelatin, lecithin, PEG, and MgCl2, so that it becomes a single unit as support for hydrophobic PUF. The interaction hydrophobic between lipases and surfactants in PUF can trigger interface-activating lipases to react more with substrates through their active sites. This study aims to study the sorption capability of PUF on co-immobilized lipase as a heterogeneous biocatalyst. The steps taken were PUF was immersed in co-immobilized in a ratio of 1:10; 1:20; 1:30 (w/w) for 1-5 h, then dried, the results were soaked in lipase and dried, producing heterogeneous biocatalysts, the best results of heterogeneous biocatalysts were tested by natural flavor ester synthesis. The results showed that the best sorption conditions were obtained for 3 hours of immersion in all PUF: immobilized co ratio 1:10; 1:20; 1:30 (w/w) was 6.95 g/g; 23.54 g/g; 19.95 g/g, and each activity was 2 U/gram PUF; 5.86 U/gram PUF; 3.34 U/gram PUF. The best result of heterogeneous biocatalyst at the ratio of PUF: co immobilized 1:20 (w/w) was tested on the synthesis of natural flavors through the esterification reaction of lauric acid from coconut oil and citronellol from citronella oil, resulting in a conversion of 55% to citronellyl laurate natural flavor.
References
S. Kumar, N. Kumar, P. Dogra, R. Gupta, Green Synthesis of Isoamyl Acetate via Silica Immobilized Novel Thermophilic Lipase from Bacillus aerius, Russ. J. Bioorganic Chem., vol. 42, no. 1, hal. 69–73, 2016.
G. Nicoletti, E. P. Cipolatti, A. Vale, N. S. Soares, E. Theilacker, J. L. Ninow, Evaluation of different methods for immobilization of Candida antarctica lipase B ( CalB lipase ) in polyurethane foam and its application in the production of geranyl propionate, Bioprocess Biosyst. Eng. vol. 38, hal. 1739-1748, 2015.
X. Zhao, F. Qi, C. Yuan, W. Du, D. Liu, Lipase-catalyzed process for biodiesel production : Enzyme immobilization, process simulation, and optimization, Renew. Sustain. Energy Rev., vol. 44, hal. 182–197, 2015.
E. P. Cipolatti, A. Valério, R. O. Henriques, M. C. C. Pinto, G. F. Lorente, E. A. Manoel, J. M. Guisán, J. L. Ninow, D. Oliveira, B. C. Pessela, Production of new nanobiocatalysts via immobilization of lipase B from C. antarctica on polyurethane nanosupports for application on food and pharmaceutical industries, Int. J. Biol. Macromol., vol. 165, hal. 2957– 2963, 2020.
M. A. A. El-Ghaffar, M. S. Hashem, Chitosan and its amino acids condensation adducts as reactive natural polymer supports for cellulase immobilization, Carbohydr. Polym., vol. 81, no. 3, hal. 507–516, 2010.
A. R. Ismail, K. H. Baek, Lipase immobilization with support materials, preparation techniques, and applications: Present and future aspects, Int. J. Biol. Macromol., vol. 163, hal. 1624–1639, 2020.
E. Alvarez-Macarie, J. Baratti, Short- chain flavor ester synthesis by a new esterase from Bacillus licheniformis, J. Mol. Catal. - B Enzym., vol. 10, no. 4, hal. 377–383, 2000.
V. Ferrario, C. Ebert, L. Knapic, D. Fattor, A. Basso, P. Spizzo, L. Gardossi, Conformational changes of lipases in aqueous media: A comparative computational study and experimental implications, Adv. Synth. Catal., vol. 353, no. 13, hal. 2466– 2480, 2011.
O. Kirk, M. W. Christensen, Lipases from Candida antarctica: Unique biocatalysts from a unique origin, Org. Process Res. Dev., vol. 6, no. 4, hal. 446–451, 2002.
S. Cantone, V. Ferrario, L. Corici, C. Ebert, D. Fattor, P. Spizzo, L. Gardossi, Efficient immobilization of industrial biocatalysts: Criteria and constraints for the selection of organic polymeric carriers and immobilization methods, Chem. Soc. Rev., vol. 42, no. 15, hal. 6262–6276, 2013.
D. Moentamaria, M. Muharja, T. Widjaja, A. Widjaja, A performance study of home-made co-immobilized lipase from mucor miehei in polyurethane foam on the hydrolysis of coconut oil to fatty acid, Bull. Chem. React. Eng. & Catal., vol. 14, no. 2, hal. 391–403, 2019.
T. Kochanė, S. Budrienė, K. Pielichowski, J. Pielichowski, Application of polyurethane-based materials for immobilization of enzymes and cells : a review, Chemija., vol. 17, no. 4, hal. 74–89, 2006.
C. Cui, Y. Tao, L. Li, B. Chen, T. Tan, Enzymatic Improving the activity and stability of Yarrowia lipolytic lipase Lip2 by immobilization on polyethyleneimine-coated polyurethane foam, Journal Mol. Catal. B, Enzym., vol. 91, hal. 59–66, 2013.
C. Joshi, S. K. Khare, Biocatalysis and Agricultural Biotechnology Purification and characterization of Pseudomonas aeruginosa lipase produced by SSF of deoiled Jatropha seed cake, Biocatal. Agric. Biotechnol., vol. 2, no. 1, hal. 32–37, 2013.
U. M. F. de Oliveira, L. J. B. Lima de Matos, M. C. M. de Souza, B. B. Pinheiro, J. C. S. dos Santos, L. R. B. Gonçalves, Effect of the Presence of Surfactants and Immobilization Conditions on Catalysts’ Properties of Rhizomucor miehei Lipase onto Chitosan, Appl. Biochem. Biotechnol., vol. 184, no. 4, hal. 1263–1285, 2018.
R. Fernandez-Lafuente, P. Armisén, P. Sabuquillo, G. Fernández-Lorente, J.
M. Guisán, Immobilization of lipases by selective adsorption on hydrophobic supports, Chem. Phys. Lipids, vol. 93, no. 1–2, hal. 185–197, 1998.
Y. Zhang, J. Ge, Z. Liu, Enhanced Activity of Immobilized or Chemically Modified Enzymes, ACS Catal., vol. 5, no. 8, hal. 4503–4513, 2015.
R. Awang, M. R. Ghazuli, M. Basri, Immobilization of Lipase from Candida Rugosa on Palm-Based Polyurethane Foam as a Support Material, Am. J. Biochem. Biotechnol., vol. 3, no. 6, hal. 163–166, 2007.
D. Moentamaria, S. Rulianah, A. Chumaidi, R. R. Bilghis A, R. Romadoni, Enhancement in synthesis of citronellyl laurate flavor by the combined effect of ultrasound and immobilized lipase as heterogeneous biocatalyst, IOP Conf. Ser. Mater. Sci. Eng., vol. 1073, no. 1, hal. 012001, 2021.
H. Li, L. Liu, F. Yang, Hydrophobic modification of polyurethane foam for oil spill cleanup, Mar. Pollut. Bull., vol. 64, no. 8, hal. 1648–1653, 2012.
D. B. Lopes, L. P. Fraga, L. F. Fleuri, G. A. Macedo, Lipase and Esterase- to What Extent Can This Classification be Applied Accurately?, Food Sci. Technol., vol. 31, no. 3, hal. 608-613, 2011.
Nyari, N. L. D., Fernandes, I. A., Bustamante-Vargas, C. E., Steffens, C., de Oliveira, D., Zeni, J., Dallago, R. M., Enzymatic In situ immobilization of Candida antarctica B lipase in polyurethane foam support, Journal Mol. Catal. B, Enzym., vol. 124, hal. 52–61, 2016.
J. Xue, Q. Zhong, Blending Lecithin and Gelatin Improves the Formation of Thymol Nanodispersions, J. Agric. Food Chem., vol. 62 no. 13 hal.2956- 2962, 2014.
R. C. Rodrigues, J. J. Virgen-Ortiz, J.C. Dos Santos, A. Berenguer-Murcia,
A. R Alcantara, O. Barbosa, R. Fernandez-Lafuente, Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solutions, Biotechnol. Adv., vol. 37, no. 5, hal. 746–770, 2019.
S. Arana-Peña, N. S. Rios, D. Carballares, L. R. B. Gonçalves, R. Fernandez-Lafuente, Immobilization of lipases via interfacial activation on hydrophobic supports: Production of biocatalysts libraries by altering the immobilization conditions, Catal. Today, vol. 362, hal. 130–140, 2021
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Dwina Moentamaria, Zakijah Irfin, Achmad Chumaidi, Heri Septya Kusuma
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.