Aplikasi Response Surface Methodology pada Optimasi Penambahan Blast Furnace Slag Terhadap Waktu Pengikatan dan Kuat Tekan Semen

Authors

  • Hardjono Hardjono Jurusan Teknik Kimia, Politeknik Negeri Malang, Jl. Soekarno Hatta No. 9, Malang 65141, Indonesia
  • Cucuk Evi Lusiani Jurusan Teknik Kimia, Politeknik Negeri Malang, Jl. Soekarno Hatta No. 9, Malang 65141, Indonesia
  • Agung Ari Wibowo Jurusan Teknik Kimia, Politeknik Negeri Malang, Jl. Soekarno Hatta No. 9, Malang 65141, Indonesia
  • Mochammad Agung Indra Iswara Jurusan Teknik Kimia, Politeknik Negeri Malang, Jl. Soekarno Hatta No. 9, Malang 65141, Indonesia

DOI:

https://doi.org/10.33795/jtkl.v4i1.150

Keywords:

Blast furnace slag, clinker, response surface methodology.

Abstract

The production of clinker consumes high energy and causes high production cost of cement industry. It can be reduced by adding blast furnace slag as a mixture in cement production. The blast furnace slag - clinker mixture can produce cement with setting time and compressive strength according to SNI. The effect of the addition of blast furnace slag as a clinker mixture to the setting time and compressive strength of cement can be optimized by response surface methodology (RSM) using Central Composite Design (CCD). Optimization by using RSM aims to determine the optimum condition of the blast furnace slag – clinker mixture to the initial setting time, final setting time, and compressive strength. ANOVA test results and response surface analysis show that the addition of blast furnace slag into the cement mixture has a significant influence on the initial setting time, final setting time, and compressive strength. The addition of  5% blast furnace slag with  92.5% clinker in the mixture of clinker and gypsum is the optimum condition which gives a significant effect on the response variable.

References

F. Alemayehu, O. Sahu, Minimalization of Variation in Clinker Quality, Advances in Materials, vol. 2, no. 2, hal. 23-28, 2013.

G. J. Osborne, Durability of portland blast-furnace slag cement concrete, Cement and Concrete Composite, vol. 21, no. 1, hal. 11-21, 1999.

J. I. Escalante-Garcia, L. J. Espinoza-Perez, A. Gorokhovsky, L. Y. Gomez-Zamorano, Coarse blast furnace slag as a cementitious material, comparative study as a partial replacement of Portland cement and as an alkali activated cement, Construction and Building Materials, vol. 23, no. 7, hal. 2511-2517, 2009.

S. Samsuri, N. Tjahjono, C. Fatma P., Pengaruh Granulated Blast Furnace Slag dalam Semen terhadap Kapasitas Produksi, Kuat Tekan Mortar, dan Nilai Ekonomis, Widya Teknika, vol. 24, no. 2, hal. 67-71, 2016.

SNI 15-2049-2004, Semen Portland, Badan Standarisasi Indonesia.

H. Niawanti, N. P. Putri, N. Rabimardani, S. Amalia, C. E. Lusiani, Modelling of Tannin Mass Transfer on the Averrhoa Bilimbi Leaf Extraction using Box-Behnken Design, Eurasian Journal of Biosciences, vol. 13, no. 2, hal. 2327-2335, 2019.

D. C. Montgomery, Design and Analysis of Experiments, Third Edition. New York: John Wiley and Sons, 1991.

A. Ehrenberg, CO2 Emissions and Energy Consumption of Granulated Blast Furnace Slag, in: EUROSLAG (3rd European Slag Conference), Keyworth, UK, hal. 151–166, 2002.

J. B. Hariawan, Pengaruh Perbedaan Karakteristik Tipe Semen Ordinary Portland Cement (OPC) dan Portland Composite Cement (PCC) terhadap Kuat Tekan Mortar dan Setting Time, Universitas Gunadarma, 2007.

A. Dubey, R. Chandak, R. K. Yadav, Effect of Blast Furnace Slag Powder on Compressive Strength of Concrete, International Journal of Scientific and Engineering Research, vol. 3, no. 8, hal. 1-5, 2012.

Downloads

Published

2020-04-28

Issue

Section

Articles