Comparison of Oil Palm Empty Fruit Bunch Delignification at Room and Mild Temperature

Authors

  • Lidya Elizabeth Department of Chemical Engineering, Politeknik Negeri Bandung, Gegerkalong Hilir Bandung, Indonesia
  • Emmanuela Maria Widyanti Department of Chemical Engineering, Politeknik Negeri Bandung, Gegerkalong Hilir Bandung, Indonesia
  • Bambang Soeswanto Department of Chemical Engineering, Politeknik Negeri Bandung, Gegerkalong Hilir Bandung, Indonesia
  • Dini Sri Wahyuni Department of Chemical Engineering, Politeknik Negeri Bandung, Gegerkalong Hilir Bandung, Indonesia
  • Kartika Dian Pratiwi Department of Chemical Engineering, Politeknik Negeri Bandung, Gegerkalong Hilir Bandung, Indonesia

DOI:

https://doi.org/10.33795/jtkl.v6i2.322

Keywords:

delignification, H2O2, catalyst, Response Surface Methodology, OPEFB

Abstract

Oil palm empty fruit bunches (OPEFB) is one kind of palm oil industry solid waste. OPEFB contains high lignocellulose for about 81-89% that can be used for production of fertilizer, paper, filler, and composite. The separating method of lignocellulose into cellulose, lignin, and hemicellulose can be carried out by delignification using H2O2 and MnSO4.H2O as catalyst. Two experimental designs were performed using the Minitab 21 program with Response Surface Methodology (RSM). Both designs have temperature as their dependent variable. The processes are carried out at 36oC and room temperature with the same variable independent, such as delignification time and concentration of the catalyst. The difference between these two designs is in their stirring process. Delignification that occured at 36oC is processed under constant stirring, while delignification that occured at room temperature is processed without stirring. This experiment aims to determine the optimum conditions for using Mn-catalyst in delignification by varying the time and catalyst concentration. The results show that the lowest lignin content in delignification with reflux is 19.71% (w/w), and for delignification without reflux is 18.24% (w/w). The optimum condition obtained by RSM for reflux delignification was at 6,83 hours with use of 11,03% (w/w) catalyst. Meanwhile, without reflux delignification, the optimum condition was at 3,38 days with a 3.76% (w/w) catalyst.

References

G. Yoricya, S. Aisyah, P. Dalimunthe, R. Manurung, N. Bangun, Hidrolisis Hasil Delignifikasi Tandan Kosong Kelapa Sawit Dalam Sistem Cairan Ionik Choline Chloride, J. Tek. Kim., vol. 5, no. 1, pp. 1–7, 2016.

M. E. Rahmasita, M. Farid, H. Ardhyananta, Analisa Morfologi Serat Tandan Kosong Kelapa Sawit Sebagai Bahan Penguat Komposit Absorpsi Suara, J. Tek. ITS, vol. 6, no. 2, pp. 2337–3520, 2017.

I. Mulyadi, Isolasi Dan Karakterisasi Selulosa:Review, J. Saintika Unpam, vol. 1, no. 2, pp. 177–182, 2019.

M. A. Pradana, H. Ardhyananta, M. Farid, Pemisahan Selulosa dari Lignin Serat Tandan Kosong Kelapa Sawit dengan Proses Alkalisasi untuk Penguat Bahan Komposit Penyerap Suara, J. Tek. ITS, vol. 6, no. 2, pp. 413–416, 2017.

P. Phanthong, P. Reubroycharoen, X. Hao, G. Xu, A. Abudula, G. Guan, Nanocellulose: Extraction and application, Carbon Resour. Convers., vol. 1, no. 1, pp. 32–43, 2018.

A. Sapta Zuidar, S. Hidayati, R. Junita Ariana Pulungan, Kajian Delignifikasi Pulp Formacell Dari Tandan Kosong Kelapa Sawit Menggunakan Hidrogen Peroksida (H2O2) Dalam Media Asam Asetat, J. Teknol. Ind. dan Has. Pertan., vol. 19, no. 2, pp. 194–204, 2014.

P. Coniwanti, M. N. P. Anka, C. Sander, Pengaruh Konsentrasi, Waktu, dan Temperatur Terhadap Kandungan Lignin pada Proses Pemutihan Bubur Kertas Bekas, J. Tek. Kima, vol. 21, no. 3, pp. 47–55, 2015.

Jayanudin, Pemutihan Daun Nanas Menggunakan Hidrogen Peroksida, J. Rek. Pros., vol. 3, no. 1, pp. 10–14, 2009.

D. Rohmawati, Epoksidasi dan Peroksida, in: Pros. Semin. Nas. Kim., Nov, 2013.

M. Lucas, S. K. Hanson, G. L. Wagner, D. B. Kimball, K. D. Rector, Evidence for room temperature delignification of wood using hydrogen peroxide and manganese acetate as a catalyst, Bioresour. Technol., vol. 119, pp. 174–180, 2012.

I. Nurika, Z.A.N.M. Muchlis, Suprayogi, Pengaruh Penambahan MnSO4 terhadap Aktivitas Enzim Mangan Peroksidase pada Delignifikasi Limbah Bagasse oleh Phlebia SP.MG-60, Jurnal Teknologi Pertanian, vol. 20, no. 3, pp. 163–170, 2019.

M. Hofrichter, Review: Lignin conversion by manganese peroxidase (MnP), Enzyme Microb. Technol., vol. 30, no. 4, pp. 454–466, 2002.

L. Ma, Y. Cui, R. Cai, X. Liu, C. Zhang, D. Xiao, Optimization and Evaluation of Alkaline Potassium Permanganate Pretreatment of Corncob, Bioresour. Technol., vol. 180, pp. 1–6, 2015.

E. V. Rembet, Optimasi Proses Delignifikasi Pada Pembuatan Pulp Dari Serat Sabut Pinang Sirih (Areca catechu L.) (Kajian Konsentrasi NaOH Dan Waktu Pemasakan, Undergraduate Thesis, Dept. Chem. Eng., Universitas Brawijaya, 2018.

Downloads

Published

2022-10-31