Delignification of Cassava Peel by Using Alkaline Hydrogen Peroxide Method: Study of Peroxide Concentration, Solid/Liquid Ratio, and pH

Authors

  • Dini Nur Afifah 1Department of Mechanical Engineering, Universitas Muhammadiyah Purwokerto, Jl. K.H Ahmad Dahlan 202, Purwokerto 53182, Indonesia
  • Neni Damajanti Department of Chemical Engineering, Universitas Muhammadiyah Purwokerto, Jl. K.H Ahmad Dahlan 202, Purwokerto 53182, Indonesia
  • Maulani Mustholidah Department of Chemical Engineering, Universitas Muhammadiyah Purwokerto, Jl. K.H Ahmad Dahlan 202, Purwokerto 53182, Indonesia
  • Hariyanti Departement of Pharmacy, Universitas Muhammadiyah Purwokerto, Jl. K.H Ahmad Dahlan 202, Purwokerto 53182, Indonesia

DOI:

https://doi.org/10.33795/jtkl.v6i2.334

Keywords:

alkaline hydrogen peroxide, delignification, lignocellulose.

Abstract

Cassava peel is a natural material with cellulose content reaching 33.33%. In order to utilize cassava peel as a biodegradable polymer and renewable energy alternative, a delignification process is essential to separate cellulose from hemicellulose and lignin, which prevents the penetration of cellulose hydrolyzer. The delignification method chosen in this study was alkaline hydrogen peroxide (AHP). The AHP is based on the autoxidation of lignin using hydrogen peroxide (H2O2) in an alkaline environment. This method was chosen because it can damage the lignocellulosic structure with relatively low energy and is more selective for lignin. However, under certain conditions, AHP can trigger carbohydrate depolymerization, which decreases yield. Therefore, it is necessary to study the effect of H2O2 concentration, Solid/Liquid ratio (S/L) (w/v), and pH to evaluate the effectiveness of lignin removal in cassava peel. The concentration of H2O2 was varied into 1.5%, 3%, 4.5%, 6%, and 7.5%. The S/L ratio is varied to 1:3, 1:5, 1:7, 1:9,1:12. The pH of the solution was varied to 8, 9, 10, 11, and 12. The reaction temperature was maintained at 70-90 °C for 3 hours. The results showed that lignin could be reduced to 84.05% for 3 hours by using  6% H2O2, an S/L ratio of 1:5, and a pH of 11. The reaction carried out under these conditions can also increase the amount of cellulose from 33.33% to 49.00%.

References

C. B. of Statistics, Panen Singkong Kabupaten Banjarnegara, Banjarnegara, 2019.

U. Hasanudin, M. E. Kustyawati, D. A. Iryani, A. Haryanto, S. Triyono, Estimation of energy and organic fertilizer generation from small scale tapioca industrial waste, IOP Conf. Ser. Earth Environ. Sci., vol. 230, no. 1, pp. 1–7, 2019.

M. S. M. Dantas, M. M. Rolim, E. M. Bonfim-Silva, E. M. R. Pedrosa, Ê. F. França e Silva, G. F. da Silva, The use of “manipueira” wastewater derived from cassava processing as organic fertilizer in sunflower cultivation, Aust. J. Crop Sci., vol. 11, no. 7, pp. 861–867, 2017.

N. Ginting, I. Sembiring, The use of cassava peel (Manihot utilissima) fermentation in the ration on the fat of local sheep, IOP Conf. Ser. Earth Environ. Sci., vol. 454, no. 1, pp. 1–5, 2020.

M. Otache, S. Ubwa, A. Godwin, Proximate Analysis and Mineral Composition of Peels of Three Sweet Cassava Cultivars, Asian J. Phys. Chem. Sci., vol. 3, no. 4, pp. 1–10, 2017.

M. Y. Eo, H. Fan, Y. J. Cho, S. M. Kim, S. K. Lee, Cellulose membrane as a biomaterial: From hydrolysis to depolymerization with electron beam, Biomater. Res., vol. 20, no. 1, pp. 1–13, 2016.

H. N. Abdelhamid, A. P. Mathew, Cellulose-Based Nanomaterials Advance Biomedicine: A Review, Int. J. Mol. Sci., vol. 23, no. 10, pp. 1–36, 2022.

P. Rachtanapun et al., Carboxymethyl bacterial cellulose from nata de coco: Effects of NaOH, Polymers (Basel)., vol. 13, no. 3, pp. 1–17, 2021.

S. Liu, L. F. Hu, W. C. Zhang, H. Y. Ma, Cellulose Acetate Reverse Osmosis Membranes for Desalination: A Short Review, Non-Metallic Mater. Sci., vol. 1, no. 2, pp. 14–24, 2019.

X. Jia, X. Peng, Y. Liu, Y. Han, Conversion of cellulose and hemicellulose of biomass simultaneously to acetoin by thermophilic simultaneous saccharification and fermentation, Biotechnol. Biofuels, vol. 10, no. 1, pp. 1–12, 2017.

C. Sindhuwati et al., Review: Potensi Tandan Kosong Kelapa Sawit sebagai Bahan Baku Pembuatan Bioetanol dengan Metode Fed Batch pada Proses Hidrolisis, J. Tek. Kim. dan Lingkung., vol. 5, no. 2, pp. 128–144, 2021.

R. Singh, A. Shukla, S. Tiwari, M. Srivastava, A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential, Renew. Sustain. Energy Rev., vol. 32, no. April, pp. 713–728, 2014.

O. P. Prastuti, F. A. Prasetya, U. Anggarini, R. P. Herwoto, H. Rahayu, Pengaruh Suhu Sintesis Katalis Partikel Ceria Zirconia terhadap Efektivitas Proses Delignifikasi, J. Tek. Kim. dan Lingkung., vol. 4, no. 1, pp. 27–32, 2020.

Y. Pratiwi, I. Lestari, I. Zamzani, The Effect of Concentration of NaOH and H2SO4 on Isolation and Identification of Cellulose Using The Delignification Process of Water Hyacinth Powder, J. Curr. Pharm. Sci., vol. 5, no. 1, pp. 429–438, 2021.

L. Matsakas et al., A novel hybrid organosolv: Steam explosion method for the efficient fractionation and pretreatment of birch biomass, Biotechnol. Biofuels, vol. 11, no. 1, pp. 1–14, 2018.

S. Sasmal, V. V. Goud, K. Mohanty, Delignification Kinetics of Lime Pretreatment—An Ineluctable Tread for Augmenting Saccharification, J. Biobased Mater. Bioenergy, vol. 7, no. 5, pp. 660–664, 2013.

M. K. Gill, G. S. Kocher, A. S. Panesar, Optimization of acid-mediated delignification of corn stover, an agriculture residue carbohydrate polymer for improved ethanol production, Carbohydr. Polym. Technol. Appl., vol. 2, pp. 1–5, 2021.

N. Anwar, I. Mukhaimin, M. Harsanti, A. Romli, Study of acid hydrolysis on organic waste: Understanding the effect of delignification and particle size, MATEC Web Conf., vol. 156, pp. 1–5, 2018.

C. Alvarez-Vasco, X. Zhang, Alkaline hydrogen peroxide pretreatment of softwood: Hemicellulose degradation pathways, Bioresour. Technol., vol. 150, pp. 321–327, 2013.

M. Li, S. Pattathil, M. G. Hahn, D. B. Hodge, Identification of features associated with plant cell wall recalcitrance to pretreatment by alkaline hydrogen peroxide in diverse bioenergy feedstocks using glycome profiling, RSC Adv., vol. 4, no. 33, pp. 17282–17292, 2014.

J. Park, H. Shin, S. Yoo, J. O. Zoppe, S. Park, Delignification of lignocellulosic biomass and its effect on subsequent enzymatic hydrolysis, BioResources, vol. 10, no. 2, pp. 2732–2743, 2015.

A. Mittal et al., Alkaline Peroxide Delignification of Corn Stover, ACS Sustain. Chem. Eng., vol. 5, no. 7, pp. 6310–6321, 2017.

A. K. Tareen, V. Punsuvon, P. Parakulsuksatid, Investigation of alkaline hydrogen peroxide pretreatment to enhance enzymatic hydrolysis and phenolic compounds of oil palm trunk, 3 Biotech, vol. 10, no. 4, pp. 1–12, 2020.

J. Damaurai, V. Champreda, N. Laosiripojana, Optimization of alkaline peroxide pretreatment of rice straw, J. Nat. Sci. Res., vol. 4, no. 13, pp. 29–33, 2014.

R. Datta, Acidogenic Fermentation of Lignocellulose-Acid Yield and Conversion of Components, Biotechnol. Bioeng., vol. 23, no. 9, pp. 2167–2170, 1981.

T. Kousar et al., SnO2/UV/H2O2 and TiO2/UV/H2O2 Efficiency for the Degradation of Reactive Yellow 160A: By-Product Distribution, Cytotoxicity and Mutagenicity Evaluation, Catalysts, vol. 12, no. 553, pp. 1–13, 2022.

J. Jayanudin, Pemutihan Daun Nanas Menggunakan Hidrogen Peroksida, J. Rekayasa Proses, vol. 3, no. 1, pp. 10–14, 2009.

E. Oktarina Sari, R. Wulandari Putri, U. Waluyo, D. Tedi Andrianto, Pengaruh Konsentrasi NaOH Terhadap Kadar Selulosa pada Proses Delignifikasi dari Serat Kapuk sebagai Bahan Baku Biodegradeble Plastic Berbasis Selulosa Asetat, in Avoer Xii, 2020, no. December, pp. 305–308.

G. Rojith, I. S. Bright Singh, Hydrogen Peroxide Pretreatment Efficiency Comparison and Characterization of Lignin Recovered from Coir Pith Black Liquor, J. Environ. Res. Dev., vol. 7, no. 4, pp. 1333–1339, 2013.

L. Pudjiastuti, T. Iswanto, A. Altway, E. O. Ningrum, T. Widjaja, Lignocellulosic Properties of Coffee Pulp Waste after Alkaline Hydrogen Peroxide Treatment, IOP Conf. Ser. Mater. Sci. Eng., vol. 543, no. 1, pp. 1–6, 2019.

P. Iyamah, A. Famuti, M. Idu, Research Article, vol. 2, no. 1, pp. 46–56, 2017.

A. P. Kristijarti, A. Arlene, Isolasi Zat Warna Ungu pada Ipomoea batatas Poir dengan Pelarut Air, Penelitian, vol. III, no. 1, pp. 1–31, 2012.

S. Mohd-Asharuddin, N. Othman, N. S. Mohd Zin, H. A. Tajarudin, A Chemical and Morphological Study of Cassava Peel: A Potential Waste as Coagulant Aid, MATEC Web Conf., vol. 103, pp. 1–8, 2017.

S. J. Kim, B. H. Yoon, Catalytic decomposition of hydrogen peroxide by transition metal ions, Palpu Chongi Gisul/Journal of Korea Technical Association of the Pulp and Paper Industry, vol. 38, no. 3. pp. 79–84, 2006.

M. Inggrid, C. Yonathan, H. Djojosubroto, Pretreatment Sekam Padi dengan Alkali Peroksida dalam Pembuatan Bioetanol, in Prosiding Seminar Nasional Teknik Kimia Kejuangan, 2011, pp. 1–6.

J. M. Gould, Studies on the mechanism of alkaline peroxide delignification of agricultural residues, Biotechnolgy Bioeng., vol. 27, no. 3, pp. 225–231, 1984.

S. Zakaria et al., Effect of contact time on the properties of cellulose, cellulose acetate and,ts film from various wastes, in AIP Conference Proceedings, 2021, vol. 2332, no. February, pp. 1–13.

Downloads

Published

2022-10-31