Parameter Interaksi Biner Kesetimbangan Uap-Cair Campuran yang Melibatkan Alkohol Rantai Bercabang atau Aseton untuk Optimasi Proses Pemurnian Bioetanol

Authors

  • Asalil Mustain Jurusan Teknik Kimia, Politeknik Negeri Malang, Indonesia
  • Khalimatus Sa'diyah Jurusan Teknik Kimia, Politeknik Negeri Malang, Indonesia
  • Agung Ari Wibowo Jurusan Teknik Kimia, Politeknik Negeri Malang, Indonesia
  • Dhoni Hartanto Jurusan Teknik Kimia, Fakultas Teknik, Universitas Negeri Semarang, Indonesia

DOI:

https://doi.org/10.33795/jtkl.v3i2.81

Keywords:

binary interaction parameter, bioethanol, design, purification, vapor-liquid equilibrium

Abstract

Parameter interaksi biner kesetimbangan uap-cair campuran yang melibatkan alkohol rantai bercabang atau aseton telah ditentukan pada penelitian ini. Data kesetimbangan uap-cair kondisi isobarik pada tekanan atmosferik telah dipilih total sebanyak 14 sistem. Data kesetimbangan tersebut kemudian dikorelasikan dengan model koefisien aktifitas Wilson, Non Random Two-Liquid (NRTL) dan Universal Quasi-Chemical (UNIQUAC) untuk diperoleh parameter interaksi binernya. Parameter tersebut ditentukan sebagai fungsi suhu pada penelitian ini untuk meningkatkan kemampuannya dalam aplikasi pada kisaran suhu yang panjang. Korelasi menunjukkan hasil yang baik dikarenakan root mean square deviation (RMSD) antara data eksperimental dengan hasil perhitungan relatif kecil. Sebagai tambahan, perilaku masing-masing sistem biner tersebut juga diamati pada kesempatan ini. Parameter yang diperoleh dapat digunakan untuk optimasi desain kolom distilasi pada proses pemurnian produksi bioetanol.

 

The binary interaction parameters of vapor-liquid equilibrium for the mixtures involving branched-chain higher alcohols or acetone have been determined in this study. Isobaric vapor-liquid equilibrium data at atmospheric pressure have been selected for a total of 14 systems. The VLE data were then correlated with the Wilson, NonRandom Two-Liquid (NRTL) and Universal Quasi Chemical (UNIQUAC) activity coefficient models to obtain its binary interaction parameters. The parameters were determined as the temperature-dependent in this study to increase its ability in wide temperature range applications. The correlations showed good results because the root mean square deviation (RMSD) between the experimental data and calculation values were relatively low. In addition, the behavior of each binary systems were also observed in this study. The obtained parameters could be used to optimize the distillation column design in the purification process of bioethanol production.

References

C. A. Cardona, J. A. Quintero, I. C. Paz, Production of Bioethanol from Sugarcane Bagasse: Status and Perspectives, Bioresour. Technol., vol. 101, no. 13, hal. 4754-4766, 2010.

S. Nikolić, L. Mojović, M. Rakin, D. Pejin, Bioethanol Production from Corn Meal by Simultaneous Enzymatic Saccharification and Fermentation with Immobilized Cells of Saccharomyces cerevisiae var. Ellipsoideus, Fuel, vol. 88, no. 9, hal. 1602-1607, 2009.

K. Karimi, G. Emtiazi, M. J. Taherzadeh, Production of Ethanol and Mycelial Biomass from Rice Straw Hemicellulose Hydrolyzate by Mucor indicus, Process Biochem., vol. 41, no. 3, hal. 653-658, 2006.

A. K. Chandel, R. K. Kapoor, A. Singh, R. C. Kuhad, Detoxification of Sugarcane Bagasse Hydrolysate Improves Ethanol Production by Candida shehatae NCIM 3501, Bioresour. Technol., vol. 98, no. 10, hal. 1947-1950, 2007.

T. P. V. B. Dias, L. A. A. P. Fonseca, M. C. Ruiz, F. R. M. Batista, E. A. C. Batista, A. J. A. Meirelles, Vapor–Liquid Equilibrium of Mixtures Containing the Following Higher Alcohols: 2- Propanol, 2-Methyl-1-propanol, and 3-Methyl-1-butanol, J. Chem. Eng. Data, vol. 59, no. 3, hal. 659-665, 2014.

A. Mustain, D. Hartanto, S. Altway, Compilation of Extended Binary Interaction Parameters for Alcohols Mixtures Encountered in Alcohol Separation Process, ARPN Journal of Engineering and Applied Sciences, vol. 11, no. 5, hal. 3465-3472, 2016.

A. Mustain, A. Takwanto, D. Hartanto, Parameter Interaksi Biner Kesetimbangan Uap-Cair Campuran Alkohol untuk Optimasi Proses Pemurnian Bioetanol, Jurnal Bahan Alam Terbarukan, vol. 5, no. 2, hal. 37-44, 2016.

G. M. Wilson, Vapor-Liquid Equilibrium. XI. A New Expression for the Excess Free Energy of Mixing, J. Am. Chem. Soc., vol. 86, no. 2, hal. 127-130, 1964.

H. Renon, J. M. Prausnitz, Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures, AlChE J., vol. 14, no. 1, hal. 135-144, 1968.

D. S. Abrams, J. M. Prausnitz, Statistical Thermodynamics of Liquid Mixtures: A New Expression for the Excess Gibbs Energy of Partly or Completely Miscible Systems, AlChE J., vol. 21, no. 1, hal. 116-128, 1975.

J. Wang, Z. Bao, Investigation on Vapor–Liquid Equilibrium for 2- Propanol + 1-Butanol + 1-Pentanol at 101.3 kPa, Fluid Phase Equilib., vol. 341, hal. 30-34, 2013.

G. Zhang, B. L. Weeks, J. Wei, Vapor−Liquid Equilibria Data for Methanol + 2-Propanol+ 2-Methyl- 2-butanol and Constituent Binary Systems at 101.3 kPa, J. Chem. Eng. Data, vol. 52, no. 3, hal. 878-883, 2007.

J. M. Resa, J. M. Goenaga, M. Iglesias, Vapor−Liquid Equilibria at 101.3 kPa for Binary Mixtures Containing 2-Methyl-1-propanol + 2-Methyl-1-butanol, 2-Methyl-1- propanol + 3-Methyl-1-butanol, and 2-Methyl-1-propanol + 1-Pentanol, J. Chem. Eng. Data, vol. 51, no. 5, hal. 1892-1895, 2006.

A. Tamir, J. Wisniak, Binary VaporLiquid Equilibriums of Some Amyl Alcohols, J. Chem. Eng. Data, vol. 21, no. 2, hal. 182-185, 1976.

X. Chen, B. Yang, A. A. Abdeltawab, S. S. Al-Deyab, G. Yu, X. Yong, Isobaric Vapor–Liquid Equilibrium for Acetone + Methanol + Phosphate Ionic Liquids, J. Chem. Eng. Data, vol. 60, no. 3, hal. 612-620, 2015.

H.-C. Ku, C.-H. Tu, Isobaric Vapor– Liquid Equilibria for Mixtures of Acetone, Ethanol, and 2,2,4- Trimethylpentane at 101.3 kPa, Fluid Phase Equilib., vol. 231, no. 1, hal. 99-108, 2005.

N. Gultekin, Vapor-Liquid Equilibria for Binary and Ternary SystemsComposed of Acetone, 2-Propanol, and 1-Propanol, J. Chem. Eng. Data, vol. 34, no. 2, hal. 168-171, 1989.

H. Hardjono, A. Mustain, P. H. Suharti, D. Hartanto, I. Khoiroh, Isobaric Vapor-Liquid Equilibrium of 2-Propanone+2-Butanol System at 101.325 kPa: Experimental and Molecular Dynamics Simulation, Korean J. Chem. Eng., vol. 34, no. 7, hal. 2011-2018, 2017.

A. Bondi, Physical Properties of Molecular Crystals, Liquids and Glasses, New York: Wiley, 1968.

Downloads

Published

2019-10-31