Pengaruh Iradiasi Gamma pada Konversi Biomassa Lignoselulosa Sabut Kelapa Menjadi Bioetanol

Authors

  • Harum Azizah Darojati Jurusan Teknokimia Nuklir, Sekolah Tinggi Teknologi Nuklir BATAN, Indonesia
  • Sugili Putra Jurusan Teknokimia Nuklir, Sekolah Tinggi Teknologi Nuklir BATAN, Indonesia
  • Fahril Putera Zulprasetya Jurusan Teknokimia Nuklir, Sekolah Tinggi Teknologi Nuklir BATAN, Indonesia

DOI:

https://doi.org/10.33795/jtkl.v3i2.121

Keywords:

coconut husk, lignosellulosic, bioethanol, gamma irradiation, SSF

Abstract

Sabut kelapa adalah salah satu limbah lignoselulosa yang dapat dikonversikan menjadi bioetanol. Konversi bioetanol pada penelitian ini dilakukan melalui beberapa tahapan yaitu proses pre-treatment, proses Saccharification and Simultaneous Fermentation (SSF), dan proses pemurnian. Proses pre-treatment sebagai proses pemecahan ikatan lignoselulosa menjadi poin utama dalam proses konversi biomassa lignoselulosa. Penelitian ini dilakukan untuk mengetahui pengaruh iradiasi gamma terhadap pemecahan ikatan lignoselulosa pada proses pre-treatment tersebut. Proses iradiasi gamma divariasikan pada dosis sebesar 0 kGy, 100 kGy, 150 kGy, 200 kGy, 250 kGy dan dilanjutkan pre-treatment secara kimia menggunakan NaOH 4%. Kemudian dilanjutkan proses pemurnian setelah proses SSF selama 72 jam. Kadar bioetanol yang diperoleh setelah proses pemurnian diukur menggunakan metode refraktometri dan piknometri. Pada penelitian ini diperoleh kadar bioetanol tertinggi pada dosis iradiasi gamma 200 kGy, yaitu 35,15% untuk metode refraktometri, dan 36,77% untuk metode piknometri. Hasil tersebut jauh lebih tinggi bila dibandingkan dengan kadar bioetanol tanpa iradiasi gamma yaitu 2,45% untuk metode refraktometri, dan 6,92% untuk metode piknometri. Penelitian ini menunjukkan bahwa metode pre-treatment dengan iradiasi gamma dapat menghasilkan kadar bioetanol yang lebih tinggi dibandingkan tanpa menggunakan iradiasi gamma.

Coconut husk is one of lignocellulosic wastes that can be converted into bioethanol. Bioethanol conversion in this study was carried out through several stages, namely the pre-treatment process, the Saccharification and Simultaneous Fermentation (SSF) process, and the purification process. The pre-treatment process as the process of breaking lignocellulosic bonds becomes the main point in the process of lignocellulosic biomass conversion. This research was conducted to determine the effect of gamma irradiation to breaking lignocellulosic bonds on the pre-treatment process. Gamma irradiation process was varied in doses of 0 kGy, 100 kGy, 150 kGy, 200 kGy, 250 kGy and continued with chemical pre-treatment using 4% NaOH. Then the purification process was continued after the SSF process for 6 days. Bioethanol levels obtained after the purification process were measured using refractometry and picnometry methods. In this study, the highest levels of bioethanol were obtained at a gamma irradiation dose of 200 kGy, namely 34.93% for the refractometry method, and 26.67% for the picnometry method, respectively. These results are much higher when compared to bioethanol levels without gamma irradiation, which is 2.25% for the refractometry method, and 5.49% for the picnometry method, respectively. This study shows that the pre-treatment method with gamma irradiation can produce higher levels of bioethanol than without using gamma irradiation.

References

G. Costa, I. Plazanet, Plant Cell Wall, A Challenge for Its Characterisation, Biological Chemistry, vol. 6, hal. 70–105, 2016.

S. Sukadarti, S. D. Kholisoh, H. Prasetyo, W. P. Santoso, T. Mursini, Produksi Gula Reduksi dari Sabut Kelapa Menggunakan Jamur Trichoderma reesei, Prosiding Seminar Nasional Teknik Kimia “Kejuangan”, Yogyakarta, Indonesia, 2010.

P. Vaithanomsat, W. Apiwatanapiwat, N. Chumchuent, W. Kongtud, S. Sundhrarajun, The Potential of Coconut Husk Utilization for Bioethanol Production, Kasetsart Journal, vol. 45, hal. 159–164, 2011.

D. A. Anggorowati, B. K. Dewi, Pembuatan Bioetanol dari Limbah Sabut Kelapa dengan Metode Hidrolisis Asam dan Fermentasi dengan Menggunakan Ragi Tape, Industri Inovatif, vol. 3, no. 2, hal. 9-13, 2013.

A. M. Jannah, F. Asip, Bioethanol Production from Coconut Fiber using Alkaline Pretreatment and Acid Hydrolysis Method, International Journal on Advanced Science Engineering Information Technology, vol. 5, no. 5, hal. 320-322, 2015.

H. F. Sangian, A. Widjaja, The Effect of Alkaline Concentration on Coconut Husk Crystallinity and the Yield of Sugars Released, IOP Conference Series: Materials Science and Engineering, vol. 306, hal. 1-6, 2018.

A. A. Fajar, Biokonversi Lignoselulosa Limbah Sabut Kelapa Menjadi Bioetanol Menggunakan Trichoderma reesei, Zimomonas mobilis dan Pichia stipitis, Skripsi, Departemen Biokimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor, Bogor, Indonesia, 2014.

Z. Lei, H. Wang, R. Zhou, Z. Duan, Influence of Salt Added to Solvent on Extractive Distillation, Chemical Engineering Journal, vol. 43, no. 2, hal. 149-156, 2002.

Y. Xiang, Y. Xiang, L. Wang, Cobalt-60 gamma-ray irradiation pretreatment and sludge protein for enhancing enzymatic saccharification of hybrid poplar sawdust, Bioresour. Technol., vol. 221, hal. 9–14, 2016.

S. Behera, R. Arora, N. Nandhagopal, S. Kumar, Importance of Chemical Pretreatment for Bioconversion of Lignocellulosic Biomass, Renew. Sustain. Energy Rev., vol. 36, hal. 91–106, 2014.

E.-H. Byun, J.-H. Kim, N.-Y. Sung, J.-i. Choi, S.-T. Lim, K.-H. Kim, H.-S. Yook, M.-W. Byun, J.-W. Lee, Effects of gamma irradiation on the physical and structural properties of β-glucan, Radiat. Phys. Chem., vol. 77, no. 6, hal. 781-786, 2008.

J.-i. Choi, H.-J. Kim, J.-H. Kim, M.-W. Byun, B. Soo Chun, D. Hyun Ahn, Y.-J. Hwang, D.-J. Kim, G. H. Kim, J.-W. Lee, Application of gamma irradiation for the enhanced physiological properties of polysaccharides from seaweeds, Appl. Radiat. Isot., vol. 67, no. 7, hal. 1277-1281, 2009.

R. S. Orozco, P. B. Hernandez, N. F. Ramirez, G. R. Morales, J. S. Luna, A. J. C. Montoya, Gamma Irradiation Induced Degradation of Orange Peels, Energies, vol. 5, hal. 3051-3063, 2012.

D. Darsono, M. Sumarti, Pembuatan Bioetanol dari Lignoselulosa Tandan Kosong Kelapa Sawit Menggunakan Perlakuan Awal Iradiasi Berkas Elektron dan NaOH, Jurnal Kimia dan Kemasan, vol. 36, no. 2, hal. 245–252, 2014.

Y. Sun, J. Cheng, Hydrolysis of lignocellulosic materials for ethanol production: a review, Bioresour. Technol., vol. 83, no. 1, hal. 1-11, 2002.

P. Puligundla, D. Smogrovicova, V. S. R. Obulam, S. Ko, Very high gravity (VHG) ethanolic brewing and fermentation, Journal of Industrial Microbiology, vol. 38, hal. 1133-1144, 2011.

E. Betiku, T. V Ojumu, B. O. Solomon, A Comparative Study of The Hydrolysis of Gamma Irradiated Lignocelluloses, vol. 26, no. 2, hal. 251–255, 2009.

I. Mulyadi, Isolasi dan Karakterisasi Selulosa: Review, Jurnal Saintika UNPAM, vol. 1, No. 2, hal. 177-182, 2019.

J. R. Pangau, H. F. Sangian, B. M. Lumi, Karakterisasi Bahan Selulosa dengan Iradiasi Pretreatment Gelombang Mikro terhadap Serbuk Kayu Cempaka Wasian (Elmerillia Ovalis) di Sulawesi Utara, Jurnal MIPA UNSRAT Online, vol. 6, no. 1, hal. 53-58, 2017.

S. M. Nomanbhay, R. Hussain, K. Palanisamy, Microwave-Assisted Alkaline Pretreatment and Microwave Assisted Enzymatic Saccharification of Oil Palm Empty Fruit Bunch Fiber for Enhanced Fermentable Sugar Yield, Journal of Sustainable Bioenergy Systems, vol. 3, hal. 7–17, 2013.

Downloads

Published

2019-10-31