Reducing Sugar Production by Cellulose Immobilized Enzyme from the Oil Palm Empty Fruit Brunch (OPEFB) Treated by Organosolv Pretreatment

Authors

  • Vini Ivania Pardeny Department of Chemical Engineering, Politeknik Negeri Bandung, Jl. Gegerkalong Hilir, Ciwaruga, Kec. Parongpong, Kabupaten Bandung Barat, Jawa Barat 40559, Indonesia
  • Alvanissa Nurfadiya Department of Chemical Engineering, Politeknik Negeri Bandung, Jl. Gegerkalong Hilir, Ciwaruga, Kec. Parongpong, Kabupaten Bandung Barat, Jawa Barat 40559, Indonesia
  • Irwan Hidayatulloh Department of Chemical Engineering, Politeknik Negeri Bandung, Jl. Gegerkalong Hilir, Ciwaruga, Kec. Parongpong, Kabupaten Bandung Barat, Jawa Barat 40559, Indonesia
  • Muhammad Umair Ul Haq Department of Chemical Engineering, Khwaja Fareed University of Engineering & Information Technology, Abu Dhabi Road, Rahim Yar Khan 64200, Pakistan
  • Ayu Ratna Permanasari Department of Chemical Engineering, Politeknik Negeri Bandung, Jl. Gegerkalong Hilir, Ciwaruga, Kec. Parongpong, Kabupaten Bandung Barat, Jawa Barat 40559, Indonesia

DOI:

https://doi.org/10.33795/jtkl.v7i2.2437

Keywords:

hydrolysis, Oil Palm Empty Fruit Bunches (OPEFB), organosolv, reducing sugar

Abstract

Oil Palm Empty Fruit Bunches (OPEFB) is lignocellulosic that consists of 13.20-25.31% lignin, 42.70-65.00% cellulose, and 17.10-33.50% hemicellulose. Cellulose can be used as a material for a new renewable energy source in the term of reducing sugar through a combination of organosolv pretreatment and hydrolysis process using immobilized enzymes. Organosolv pretreatment was used for lignin degradation, by using ethanol as solvent, which are environmentally friendly and easy to recover, with a concentration S/L 10%(w/w), in 160°C for 90-150 min. The following process is to produce crude enzyme from Aspergillus niger and Trichoderma viride. The resulting crude enzyme cellulase activity of 0.774 U/mL. Then, the crude enzyme is immobilized by Chitosan-GDA. OPEFB hydrolysis process with immobilized cellulase was carried out for 5, 7 and 9 days at 37°C. The best result of lignin degradation reaches out 56.68% lignin removal at 160°C for 150 min, while the hydrolysis of cellulose gives the highest yield, 47.59%, in the 9 days processing time.

References

Badan Pusat Statistik, Statistik Kelapa Sawit Indonesia, 2020.

R. Siswanto, M. I. Arsyad, R. A. Wicaksono, Studi Karakteristik Terhadap Uji Impact Dan Bending Komposit Tandan Kosong Kelapa Sawit-Polyester Dengan Perlakuan Alkali Dan Hidrogen Peroksida, J. Teknol. Rekayasa Tek. Mesin, vol. 2, no. 2, pp. 129–134, 2021.

M. E. Rahmasita, M. Farid, H. Ardhyananta, Analisa Morfologi Serat Tandan Kosong Kelapa Sawit Sebagai Bahan Penguat Komposit Absorpsi Suara, J. Tek. ITS, vol. 6, no. 2, pp. A584–A588, 2017.

K. Mondylaksita, J. A. Ferreira, R. Millati, W. Budhijanto, C. Niklasson, M. J. Taherzadeh, Recovery of high purity lignin and digestible cellulose from oil palm empty fruit bunch using low acid-catalyzed organosolv pretreatment, Agronomy, vol. 10, no. 5, pp. 674, 2020.

S. R. Salsabila, A. S. Hasanah, E. M. Widyanti, L. Elizabeth, Studi Literatur Pengaruh Kondisi Operasi Fraksionasi TKKS dengan Proses Organosolv Terhadap Kadar Selulosa dan Lignin, Pros. 12th Ind. Res. Work. Natl. Semin., pp. 770–778, 2021.

L. L. Sitompul, I. N. F. Putri, Produksi Gula Reduksi dari Sabut Kelapa dengan Menggunakan Kombinasi Enzim Selulase dari A. Niger dan T. Reesei Terimobilisasi pada Chitosan Magnetic Microparticle, Bachelor Thesis, Institut Teknologi Sepuluh Nopember, Indonesia, 2017.

N. F. Putri, M. R. G. Dwinanda, A. Widjaja, A. Hamzah, H. F. Sangian, Mass Transfer and Reaction in Hydrolysis of Coconut Husk Using Immobilized Enzyme on Chitosan Magnetic Nanoparticle, IOP Conf. Ser.: Mater. Sci. Eng., vol. 1053, pp. 012046, 2021.

S. R. Juliastuti, N. Hendrianie, K. R. Sabar, S. Anggita, Glucose production from oil palm empty fruit bunch (OPEFB) using microwave and fungal treatment method, IOP Conf. Ser.: Earth Environ. Sci., vol. 963, pp. 012053, 2022.

A. Nuryahya, D. A. P. Kartika, Pra Rancangan Pabrik Asam Levulinat dari Tandan Kosong Kelapa Sawit dengan Kapasitas Produksi 25.000 Ton/Tahun, Bachelor Thesis, Institut Teknologi Kalimantan, Indonesia 2021.

H. Heradewi, Isolasi Lignin dari Lindi Hitam Proses Pemasakan Organosolv Serat Tandan Kosong Kelapa Sawit (TKKS), Bachelor Thesis, Institut Pertanian Bogor, Indonesia, 2007.

P. Schulze, A. Seidel-Morgenstern, H. Lorenz, M. Leschinsky, G. Unkelbach, Advanced process for precipitation of lignin from ethanol organosolv spent liquors, Bioresour. Technol., vol. 199, pp. 128–134, 2016.

H. A. Darojati, R. Purwadi, C. B. Rasrendra, Proses Fraksionasi Biomassa dari Tandan Kosong Kelapa Sawit melalui Metode Organosolv Etanol dengan Penambahan Katalis, J. Selulosa, vol. 10, no. 2, pp. 73–80, 2020.

Elwin, Optimasi Produksi Enzim Selulase Oleh Aspergillus niger dan Trichoderma viride untuk Hidrolisis Selulosa Eceng Gondok (Eichornia crassipes), Master Thesis, Universitas Brawijaya, Indonesia, 2016.

N. Idiawati, E. M. Harfinda, L. Arianie, Produksi Enzim Selulase oleh Aspergillus niger pada Ampas Sagu, J. Natur Indones., vol. 16, no. 1, pp. 1–9, 2014.

G. E. K. Parwita, D. R. Tardan, Produksi Gula Reduksi Dengan Hidrolisis Sabut Kelapa Hasil Pretretament Alkali Menggunakan Crude Enzim Terimobilisasi, Bachelor Thesis, Institut Teknologi Sepuluh Nopember, Indonesia, 2016.

F. Kurniawan, T. T. Nugroho, A. Dahliaty, Isolasi dan Pemekatan Enzim Selulase Trichoderma sp LBKURCC28 Menggunakan Metode Penggaraman (NH4)2SO4 80% Serta Penentuan Aktivitas dan Aktivitas Spesifik Enzim, JOM FMIPA, vol. 1, no. 2, pp. 1–6, 2014.

T. Yuwono, E. Rolanda, A. Widjaja, S. Soeprijanto, Fermentasi hidrolisat enzimatik bagasse tebu menjadi hidrogen, J. Teknik POMITS, vol. 1, no. 1, pp. 1–5, 2012.

S. Rulianah, Z. Irfin, M. Mufid, P. Prayitno, Produksi Crude Selulase dari Bahan Baku Ampas Tebu Menggunakan Kapang Phanerochaete chrysosporium, J. Tek. Kim. dan Lingkung., vol. 1, no. 1, pp. 17–27, 2017.

D. De Idral, M. Salim, E. Mardiah, Proses Hidrolisis Asam Dan Menggunakan Saccharomyces cerevisiae, J. Kim. Unand, vol. 1, no. 1, pp. 34–39, 2012.

Downloads

Published

2023-10-29