Synthesis of Methyl Ester from Microalgae Chlorella sp. TAD Using the In-Situ Transesterification Method
DOI:
https://doi.org/10.33795/jtkl.v8i1.3197Keywords:
Chlorella sp. TAD, in-situ transesterification, methyl ester, microalgae, synthesisAbstract
Synthesis of methyl ester from Chlorella sp. TAD microalgae was carried out using the in-situ transesterification method. This study aims to determine the methyl ester composition of Chlorella sp. TAD microalgae using the in-situ transesterification method. The in-situ transesterification method is a modified method that allows extraction and transesterification into methyl ester products in one process simultaneously. The in-situ transesterification process lasted 8 hours, followed by a distillation process to remove the n-hexane content and an oven for 2 hours to evaporate the remaining water. The results of the analysis using GC-MS to determine the chemical content of the methyl ester compound from Chlorella sp. TAD, showed the methyl ester composition of 7,10-hexadecanoic methyl ester, 8,11,14-docosatrienoic methyl ester, 9-hexadecanoic methyl ester, hexadecanoic methyl ester, heptadecanoic methyl ester, 10-octadecenoic methyl ester, octadecenoic methyl ester, 9,12-octadecadienoic methyl ester, 10-octadecenoic methyl ester, 2-hexyl cyclopropaneoctanoic methyl ester, eicosanoic methyl ester, 10-heptadecen-8-ynoic acid methyl ester, nonahexacontanoic methyl ester, and tetracosanoic methyl ester.
References
A. Bandjar, Mapping Resiko Adaptasi Perubahan Iklim dan Pengurangan Risiko Bencana Untuk Ketahanan di Kecamatan Sirimau Kota Ambon, Seminar Nasional Basic Science VI, 2014.
I. Telussa, N. Hattu, A. Sahalessy, Morphological Observation, Identification and Isolation of Tropical Marine Microalgae from Ambon Bay, Maluku, Indonesian Journal of Chemical Research, vol. 9, no. 3, pp. 137–143, 2022.
Z. Nurachman, H. Hartini, W. R. Rahmaniah, D. Kurnia, R. Hidayat, B. Prijamboedi, V. Suendo, E. Ratnaningsih, L. M. G Penggabean, S. Nurbaiti, Tropical marine Chlorella sp. PP1 as a source of photosynthetic pigments for dye-sensitized solar cells, Algal Research, vol. 10, pp. 25–32, 2015.
H. Djamaludin, A. Chamidah, Analisis Komposisi Asam Lemak ekstrak Minyak Mikroalga Spirulina sp. dengan Metode Ekstraksi yang Berbeda, Journal of Fisheries and Marine Research, vol. 5, no. 2, pp. 254–261, 2021.
I. Telussa, E. G. Fransina, J. Singerin, Produksi Bioetanol dari Mikroalga Laut Ambon Chlorella sp. TAD, Jurnal Sains Dasar, vol. 11, no. 2, pp. 63–69, 2022.
S. Amini, R. Susilowati, Produksi Biodiesel dari Mikroalga Botryococcus Braunii, Squalen, vol. 5, no. 1, pp. 23–32, 2010.
E. Saadudin, S. R. Fitri, V. J. Wargadalam, Karakteristik Asam Lemak Mikroalga untuk Produksi Biodiesel, Ketenagalistrikan dan Energi Terbarukan, vol. 10, no. 2, pp. 131–140, 2011.
W. Widianingsih, R. Hartati, H. Endrawati, E. Yudianti, V. R. Iriani, Pengaruh Pengurangan Konsentrasi Nutrien Fosfat dan Nitrat Terhadap Kandungan Total Lipid Nannochloropsis oculata, Ilmu Kelautan, vol. 16, no. 1, pp. 24–29, 2011.
C. R. Widyastuti, A. C. Dewi, Sintesis Biodiesel dari Minyak Mikroalga Chlorella Vulgaris dengan Reaksi Transesterifikasi Menggunakan Katalis KOH, Jurnal Bahan Alam Terbarukan, vol. 3, no.1, pp. 29–33, 2014.
K. G. Jahrom, Z. H. Koochi, G. Kavoosi, A. Shahsavar, Manipulation of fatty acid profile and nutritional quality of Chlorella vulgaris by supplementing with citrus peel fatty acid, Scientiic Reports, vol. 12, pp. 8151, 2022.
A. Bandjar, F. A. Souhoka, C. Tulaseket, I. W. Sutapa, Fatty Acid Analysis of Microalgae Chlorella sp. Cultured Results in a Closed System, Journal of Multidisciplinary Engineering Science and Technology, vol. 6, no.11, pp. 11102–11107, 2019.
F. R. Cahyani, H. S. M. Isman, Potensi Chlorella spp. sebagai Antioksidan dan Anti-Inflamasi, Journal of Vocational Health Studies, vol. 5, no. 3, pp. 203–211, 2022.
G. Canelli, P. M. Martínez, S. Austin, M. E. Ambühl, F. Dionisi, C. J. Bolten, R. Carpine, L. Neutsch, A. Mathys, Biochemical and morphological characterization of heterotrophic crypthecodinium cohnii and Chlorella vulgaris cell walls. J. Agric. Food Chem., vol. 69, no.7, pp 2226–2235, 2021.
A. S Ferreira, S. S. Ferreira, A. Correia, M. Vilanova, T. H. Silva, M. A. Coimbra, C. Nunes, Reserve, structural and extracellular polysaccharides of Chlorella vulgaris: A holistic approach, Algal Research, vol. 45, pp. 101757, 2020.
S. Weber, P. M. Grande, L. M. Blank, H. Klose, Insights into cell wall disintegration of Chlorella vulgaris, PLoS ONE, vol. 17, No. 1, pp. 1–14, 2022.
D. Kurnia, A. Yuliantini, I. C. Cendana, Z. Nurachman, Fatty Acid Analysis of Marine Microalgae Chlorella vulgaris in Modified Medium Used GC-FID, Journal of Physics: Conference Series, vol. 1338, pp. 012007, 2019.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Ivon Telussa, Eirene G. Fransina, Kalsum Kalauw
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.