Characterization of Bioethanol from Tuber of Porang Waste Fermented with Saccharomyces cerevisiae Enzyme: Effect of Fermentation Time and Yeast Ratio

Authors

  • Rina Ridara Magister Program in Renewable Energy Engineering, Faculty of Engineering, Universitas Malikussaleh, Jalan Batam, Kampus Bukit Indah, 24352, Lhokseumawe, Indonesia
  • Muhammad Muhammad Magister Program in Renewable Energy Engineering, Faculty of Engineering, Universitas Malikussaleh, Jalan Batam, Kampus Bukit Indah, 24352, Lhokseumawe, Indonesia; Department of Chemical Engineering, Faculty of Engineering, Universitas Malikussaleh, Jalan Batam, Kampus Bukit Indah, 24352, Lhokseumawe, Indonesia
  • Adi Setiawan Magister Program in Renewable Energy Engineering, Faculty of Engineering, Universitas Malikussaleh, Jalan Batam, Kampus Bukit Indah, 24352, Lhokseumawe, Indonesia; Department of Mechanical Engineering, Faculty of Engineering, Universitas Malikussaleh, Jalan Batam, Kampus Bukit Indah, 24352, Lhokseumawe, Indonesia https://orcid.org/0000-0003-3967-542X
  • Shafira Riskina Magister Program in Renewable Energy Engineering, Faculty of Engineering, Universitas Malikussaleh, Jalan Batam, Kampus Bukit Indah, 24352, Lhokseumawe, Indonesia https://orcid.org/0000-0002-2055-118X
  • Siti Nurjannah Magister Program in Renewable Energy Engineering, Faculty of Engineering, Universitas Malikussaleh, Jalan Batam, Kampus Bukit Indah, 24352, Lhokseumawe, Indonesia

DOI:

https://doi.org/10.33795/jtkl.v7i2.3199

Keywords:

bioethanol, distillation, fermentation, hydrolysis, tuber of porang

Abstract

The production of bioethanol from non-plant lignocellulosic materials has reached a commercial scale and is advocated as a possible solution for the decarbonization of the transport sector. Porang pulp tubers can be converted into bioethanol because they have abundant potential due to their high glucomannan content. The purpose of this study was to determine the effect of fermentation time and the ratio of yeast addition on bioethanol production. The methods used are hydrolysis, fermentation and distillation methods. The hydrolysis process used 5% (v/v) HCl catalyst, the fermentation process with 6 gr sample powder tuber of waste used Saccharomyces cerevisiae bacteria with varying ratios of 2.5, 4 and 6.5 g and variations in fermentation time for 2, 4 and 6 days at 38-40˚C. The results showed that the duration of fermentation had a significant effect on the yield of bioethanol, where microorganisms have the opportunity to break down more glucose to produce bioethanol. While the ratio of the addition of yeast added to the fermentation process, the greater the ratio of the addition of yeast, the greater the bioethanol produced. Where the addition of 6.5 grams of yeast and 6 days of fermentation time, resulted in a yield of 9.889%, a bioethanol concentration of 37.599%, a refractive index of 1.3642 and a density of 1.04 g/ml.

References

E. N. Ali, S. Z. Kemat, Bioethanol produced from Moringa oleifera seeds husk, IOP Conf. Ser. Mater. Sci. Eng., vol. 206, pp. 012019, 2017.

E. Praputri, E. Sundari, Production of Bioethanol from Colocasia esculenta (L.) Schott (Talas Liar) by Hydrolysis Process, IOP Conf. Ser. Mater. Sci. Eng., vol. 543, pp. 012056, 2019.

C. T. Weber, L. F. Trierweiler, J. O. Trierweiler, Food waste biorefinery advocating circular economy: Bioethanol and distilled beverage from sweet potato, J. Clean. Prod., vol. 268, pp. 121788, 2020.

P. Bhuyar, S. Sathyavathi, R. K. Math, G. P. Maniam, N. Govindan, Production of bioethanol from starchy tuber (Amorphophallus commutatus) and antimicrobial activity study of its extracts, African J. Biol. Sci., vol. 2, no. 2, pp. 70–76, 2020.

P. G. Del Río, P. Gullón, F. R. Rebelo, A. Romaní, G. Garrote, B. Gullón, A whole-slurry fermentation approach to high-solid loading for bioethanol production from corn stover, Agronomy, vol. 10, no. 11, pp. 1–16, 2020.

M. Trejo, P. Bhuyar, Y. Unpaprom, N. Dussadee, R. Ramaraj, Advancement of fermentable sugars from fresh elephant ear plant weed for efficient bioethanol production, Environ. Dev. Sustain., vol. 24, pp. 7377–7387, 2022.

S. V. Mellicha, I. B. W. Gunam, N. S. Antara, I. W. Arnata, Production of bioethanol from wild cassava crude starch (Manihot glaziovii Muell. Arg) using different microbial types and fermentation times, IOP Conf. Ser. Earth Environ. Sci., vol. 913, pp. 012032, 2021.

A. Kefale, M. Redi, A. Asfaw, Potential of bioethanol production and optimization test from agricultural waste: The case of wet coffee processing waste (pulp), Int. J. Renew. Energy Res., vol. 2, no. 3, pp. 446–450, 2012.

L. Edahwati, P. D. Suci, S. N. Dyah, T. Widjaya, A. Altway, D. Cahyo, A. Nandini, Bioethanol quality improvement of coffee fruit leather, MATEC Web Conf., vol. 58, pp. 01004, 2016.

E. M. Konar, S. M. Harde, L. D. Kagliwal, R. S. Singhal, Value-added bioethanol from spent ginger obtained after oleoresin extraction, Ind. Crops Prod., vol. 42, no. 1, pp. 299–307, 2013.

K. Kusmiyati, H. Susanto, Fuel Grade Bioethanol Production from Iles-iles (Amorphophaluscampanulatus) Tuber, Procedia Environ. Sci., vol. 23, pp. 199–206, 2015.

K. Tanaka, M. Koyama, P. T. Pham, A. P. Rollon, H. Habaki, R. Egashira, K. Nakasaki, Production of high-concentration bioethanol from cassava stem by repeated hydrolysis and intermittent yeast inoculation, Int. Biodeterior. Biodegrad., vol. 138, pp. 1–7, 2019.

A. Yanuriati, D. W. Marseno, Rochmadi, E. Harmayani, Characteristics of glucomannan isolated from fresh tuber of Porang (Amorphophallus muelleri Blume), Carbohydr. Polym., vol. 156, pp. 56–63, 2017.

M. Arief Aditriandi, Kondisi Porang dan Produk Olahan Porang di Indonesia, Jakarta, 2023. [Online]. Available: https://agro.kemenperin.go.id/artikel/6519-kondisi-porang-dan-produk-olahan-porang-di-indonesia.

M. Alonso-Sande, D. Teijeiro-Osorio, C. Remuñán-López, M. J. Alonso, Glucomannan, a promising polysaccharide for biopharmaceutical purposes, Eur. J. Pharm. Biopharm., vol. 72, no. 2, pp. 453–462, 2009.

N. Nur’aini, I. W. Dari, A. A. Setiawan, D. R. Laksmitawati, Macronutrients Analysis of Porang Tubers (Amorphophallus muelleri Blume) Fermentation With Lactobacillus Bulgaricus Bacteria, Proc. 4th Int. Conf. Sustain. Innov. 2020–Health Sci. Nurs. (ICoSIHSN 2020), pp. 488–492, 2021.

K. Kusmiyati, Comparasion of iles-iles and cassava tubers as a Saccharomyces cerevisiae substrate fermentation for bioethanol production, Nusant. Biosci., vol. 2, no. 1, pp. 7–13, 2010.

M. Mawaddah, A. Setiawan, Z. Zulnazri, A. P. Putri, N. A. Khan, V. Jain, Hydrolysis of coffee pulp as raw material for bioethanol production: sulfuric acid variations, J. Renew. Energy, Electr. Comput. Eng., vol. 2, no. 1, pp. 1–6, 2022.

M. Aznury, T. Setiadi, Identifikasi Senyawa Asam Lemak Volatil dari Air Limbah Industri Minyak Kelapa Sawit untuk Produksi Polihidroksialkanoat oleh Ralstonia eutropha JMP 134, J. Selulosa, vol. 11, no. 1, pp. 49–58, 2021.

J. S. Siregar, A. Ahmad, S. Z. Amraini, Effect of Time Fermentation and Saccharomyces cerevisiae Concentration for Bioethanol Production from Empty Fruit Bunch, J. Phys. Conf. Ser., vol. 1351, pp. 012104, 2019.

A. Awaliyah, S. Yani, Z. Sabara, Pembuatan Bioetanol Dari Limbah Industri Agar-Agar, Journal of Technology Procces, vol. 2, no. 2, pp. 32–37, 2022.

T. C. Egbosiuba, D. O. Agbajelola, A. S. Abdulkareem, J. O. Okafor, A. Jimoh, Production, Characterization and Kinetic Modeling of Bioethanol Production from Cassava Tubers, Elixir Chem. Engg., vol. 71, pp. 25097–25105, 2014.

D. Hernández, R. Rebolledo-leiva, H. Fernitundez-puratich, H. Quinteros-lama, F. Cataldo, E. Muñoz, C. Tenreiro, Recovering apple agro-industrial waste for bioethanol and vinasse joint production: Screening the potential of chile, Fermentation, vol. 7, no. 4, pp. 203, 2021.

K. A. Roni, M. Hastarina, N. Herawati, Effects of yeast’s weight and fermentation time to percent yield of bioethanol from Peatlan, Int. J. Recent Technol. Eng., vol. 7, no. 6, pp. 32–37, 2019.

M. Hashem, S. A. Alamri, T. A. Y. Asseri, Y. S. Mostafa, G. Lyberatos, I. Ntaikou, On the Optimization of Fermentation Conditions for Enhanced Bioethanol Yields from Starchy Biowaste via Yeast Co-Cultures, Sustainability, vol. 13, no. 4, pp. 1–13, 2021.

Q. Zhang, Y. L. Jin, Y. Fang, H. Zhao, Adaptive evolution and selection of stress-resistant Saccharomyces cerevisiae for very high-gravity bioethanol fermentation, Electron. J. Biotechnol., vol. 41, pp. 88–94, 2019.

I. Irmayadani, T. M. Iqbalsyah, Y. Yopi, F. Febriani, Preliminary study of bioethanol production by Saccharomyces cerevisiae BTCC12 utilizing hydrolysis products of Dioscorea hispida tubers, IOP Conf. Ser. Earth Environ. Sci., vol. 364, pp. 012004, 2019.

M. Hashem, S. M. I. Darwish, Production of bioethanol and associated by-products from potato starch residue stream by Saccharomyces cerevisiae, Biomass and Bioenergy, vol. 34, no. 7, pp. 953–959, 2010.

Standar dan Mutu (Spesifikasi) Bahan Bakar Nabati (Biofuel) Jenis Bioetanol sebagai Bahan Bakar Lain yang Dipasarkan di Dalam Negeri, Direktroat Jendral Minyak dan Gas Bumi, 2008.

A. A. Saka, A. S. Afolabi, M. U. Ogochukwu, Production and characterization of bioethanol from sugarcane bagasse as alternative energy sources, Proceedings of the World Congress on Engineering, vol. 2, pp. 876–880, 2015.

N. A. Musa, Production and fuel characterisation of bioethanol from dika-nut shell, Acta Technica Corviniensis - Bulletin of Engineering, vol. 12, no. 2, pp. 101–104, 2019.

F. Fadly, M. K. Afdhol, F. Hidayat, Y. Yuliusman, R. M. Nordin, R. Hasibuan, F. M. Hakim, Formulation of Bioethanol from Pineaple Skin Waste and Applicated as Wax Inhibitors, IOP Conf. Ser. Earth Environ. Sci., vol. 1034, pp. 012026, 2022.

Downloads

Published

2023-10-29