Palm Oil Mill Effluent Treatment Technology using Sequencing Batch Reactor (SBR) with Oxidation Reduction Potential (ORP) Monitoring

Authors

  • Andri Sanjaya Chemical Engineering Department, Institut Teknologi Sumatera, Jalan Terusan Ryacudu, Lampung Selatan 35365, Indonesia
  • Desi Riana Saputri Chemical Engineering Department, Institut Teknologi Sumatera, Jalan Terusan Ryacudu, Lampung Selatan 35365, Indonesia
  • Damayanti Damayanti Chemical Engineering Department, Institut Teknologi Sumatera, Jalan Terusan Ryacudu, Lampung Selatan 35365, Indonesia
  • Yunita Fahni Chemical Engineering Department, Institut Teknologi Sumatera, Jalan Terusan Ryacudu, Lampung Selatan 35365, Indonesia
  • Wika Atro Auriyani Chemical Engineering Department, Institut Teknologi Sumatera, Jalan Terusan Ryacudu, Lampung Selatan 35365, Indonesia
  • Mustafa Mustafa Chemical Engineering Department, Institut Teknologi Sumatera, Jalan Terusan Ryacudu, Lampung Selatan 35365, Indonesia

DOI:

https://doi.org/10.33795/jtkl.v8i1.3340

Keywords:

aerobic granular sludge, oxidation-reduction potential, POME, sequencing batch reactor

Abstract

Palm oil industries have products like Crude Palm Oil (CPO), and 70% of others contain waste. One of the wastes is the liquid waste known as Palm Oil Mill Effluent (POME). The potential of POME to be reprocessed into clean water will be profitable. One of POME's reprocessing methods is the Sequencing Batch Reactor with Aerobic Granulated Sludge (SBR-AGS), which has five main phases: filling, idling, aeration, settling, and discharge, with a cycle time of 360 minutes. The first step in using this reactor is the start-up process, a granule-forming process from some sludge that has already acclimatized. In one complete cycle, the Oxidation-Reduction Potential (ORP) parameter is used to observe the electron transfer process that shows the oxygen supply into the reactor, which enables the condition of each phase in the process to be analyzed. The trend of ORP value is constantly changing in every phase. For the idling phase, the ORP tends to decrease in a value of (-300)-(-400) mV, and for the aeration phase, it will increase in a value of (-100)-100 mV.

References

E. Ustinova, Report Name : Oilseeds and Products Update, pp. 10, 2019.

B. Dukhnytskyi, World agricultural production, Ekon. APK, no. 7, pp. 59–65, 2019.

Direktorat Jendral Perkebunan, Statistik Perkebunan Indonesia 2018-2020, Secr. Dir. Gen. Estates, pp. 1–82, 2019.

P. Suttayakul, A. H-Kittikun, C. Suksaroj, J. Mungkalasiri, R. Wisansuwannakorn, C. Musikavong, Water footprints of products of oil palm plantations and palm oil mills in Thailand, Sci. Total Environ., vol. 542, pp. 521–529, 2016.

M. J. Iskandar, A. Baharum, F. H. Anuar, R. Othaman, Palm oil industry in South East Asia and the effluent treatment technology—A review, Environ. Technol. Innov., vol. 9, pp. 169–185, 2018.

A. Ratnasari, A. Syafiuddin, R. Boopathy, S. Malik, M. A. Mehmood, R. Amalia, D. D. Prastyo, N. S. Zaidi, Advances in pretreatment technology for handling the palm oil mill effluent: Challenges and prospects, Bioresour. Technol., vol. 344, pp. 126239, 2022.

K. Y. Show, E. K. V. Lo, W. S. Wong, J. Y. Lee, Y. Yan, D. J. Lee, Integrated Anaerobic/Oxic/Oxic treatment for high strength palm oil mill effluent, Bioresour. Technol., vol. 338, pp. 125509, 2021.

M. S. Saad, M. D. H. Wirzal, Z. A. Putra, Review on current approach for treatment of palm oil mill effluent: Integrated system, J. Environ. Manage., vol. 286, pp. 112209, 2021.

Z. K. Liew, Y. J. Chan, Z. T. Ho, Y. H. Yip, M. C. Teng, A. I. T. Ameer Abbas bin, S. Chong, P. L. Show C. L. Chew, Biogas production enhancement by co-digestion of empty fruit bunch (EFB) with palm oil mill effluent (POME): Performance and kinetic evaluation, Renew. Energy, vol. 179, pp. 766–777, 2021.

A. Ratnasari, N. S. Zaidi, A. Syafiuddin, R. Boopathy, A. B. H. Kueh, R. Amalia, D. D. Prasetyo, Prospective biodegradation of organic and nitrogenous pollutants from palm oil mill effluent by acidophilic bacteria and archaea, Bioresour. Technol. Reports, vol. 15, pp. 100809, 2021.

D. A. B. Sidik, N. H. H. Hairom, M. K. Ahmad, R. H. Madon, A. W. Mohammad, Performance of membrane photocatalytic reactor incorporated with ZnO-Cymbopogon citratus in treating palm oil mill secondary effluent, Process Saf. Environ. Prot., vol. 143, pp. 273–284, 2020.

K. S. Lim, V. Sethu, A. Selvarajoo, Natural plant materials as coagulant and flocculants for the treatment of palm oil mill effluent, Mater. Today Proc., vol. 48, pp. 871–887, 2021.

Z. Mohamad, A. A. Razak, S. Krishnan, L. Singh, A. W. Zularisam, M. Nasrullah, Treatment of palm oil mill effluent using electrocoagulation powered by direct photovoltaic solar system, Chem. Eng. Res. Des., vol. 177, pp. 578–582, 2022.

F. Sun, Y. Lu, J. Wu, Comparison of operational strategies for nitrogen removal in aerobic granule sludge sequential batch reactor (AGS-SBR): A model-based evaluation, J. Environ. Chem. Eng., vol. 7, no. 5, pp. 103314, 2019.

Y. J. Chan, M. F. Chong, C. L. Law, Biological treatment of anaerobically digested palm oil mill effluent (POME) using a Lab-Scale Sequencing Batch Reactor (SBR), J. Environ. Manage., vol. 91, no. 8, pp. 1738–1746, 2010.

W. Chen, Y. Lu, Q. Jin, M. Zhang, J. Wu, A novel feedforward control strategy for simultaneous nitrification and denitrification (SND) in aerobic granular sludge sequential batch reactor (AGS-SBR), J. Environ. Manage., vol. 260, pp. 110103, 2020.

L. Lei, J.-c. Yao, Y.-d. Liu, W. Li, Performance, sludge characteristics and microbial community in a salt-tolerant aerobic granular SBR by seeding anaerobic granular sludge, Int. Biodeterior. Biodegrad., vol. 163, pp. 105258, 2021.

S. Kosar, O. Isik, B. Cicekalan, H. Gulhan, S. Cingoz, M. Yoruk, H. Ozgun, I. Koyuncu, M. C. M. van Loosdrecht, M. E. Ersahin, Coupling high-rate activated sludge process with aerobic granular sludge process for sustainable municipal wastewater treatment, J. Environ. Manage., vol. 325, pp. 116549, 2023.

M. K. H. Winkler, Q. H. Le, E. I. P. Volcke, Influence of Partial Denitrification and Mixotrophic Growth of NOB on Microbial Distribution in Aerobic Granular Sludge, Environ. Sci. Technol., vol. 49, no. 18, pp. 11003–11010, 2015.

E. J. H. van Dijk, V. A. Haaksman, M. C. M. van Loosdrecht, M. Pronk, On the mechanisms for aerobic granulation - model based evaluation, Water Res., vol. 216, pp. 118365, 2022.

S. Lackner, C. Lindenblatt, H. Horn, Swinging ORP as operation strategy for stable reject water treatment by nitritation-anammox in sequencing batch reactors, Chem. Eng. J., vol. 180, pp. 190–196, 2012.

S. Lackner, H. Horn, Evaluating operation strategies and process stability of a single stage nitritation-anammox SBR by use of the oxidation-reduction potential (ORP), Bioresour. Technol., vol. 107, pp. 70–77, 2012.

P. Tanwar, T. Nandy, P. Ukey, P. Manekar, Correlating on-line monitoring parameters, pH, DO and ORP with nutrient removal in an intermittent cyclic process bioreactor system, Bioresour. Technol., vol. 99, no. 16, pp. 7630–7635, 2008.

M. I. Siddiqui, H. Rameez, I. H. Farooqi, F. Basheer, Aeration control strategy design based on dissolved oxygen and redox potential profiles for nitrogen and phosphorus removal from sewage in a sequencing batch reactor, J. Water Process Eng., vol. 50, pp. 103259, 2022.

F. Chen, X. H. Feng, J. F. Liang, H. Xu, P. K. Ouyang, An oxidoreduction potential shift control strategy for high purity propionic acid production by Propionibacterium freudenreichii CCTCC M207015 with glycerol as sole carbon source, Bioprocess Biosyst. Eng., vol. 36, no. 9, pp. 1165–1176, 2013.

Z. Zhou, Y. Jing, S. Wei, Q. Zhang, S. Peng, X. An, H. Li, Enhancement of butanol production in Clostridium acetobutylicum SE25 through oxidation-reduction potential regulation and analysis of its metabolic mechanisms, Fuel, vol. 331, pp. 125708, 2023.

N. Uri-Carreño, P. H. Nielsen, K. V. Gernaey, Q. Wang, U. G. Nielsen, M. Nierychlo, S. H. Hansen, L. Thomsen, X. Flores-Alsina, The effects of low oxidation-reduction potential on the performance of full-scale hybrid membrane-aerated biofilm reactors, Chem. Eng. J., vol. 451, pp. 138917, 2023..

Y. Tokuda, Suitability of air moisture oxidation–reduction potential as an indicator of atmospheric pollution, Sci. Total Environ., vol. 839, pp. 156137, 2022.

APHA-AWWA-WEF, Standard Methods, Encyclopedia of Forensic Sciences: Second Edition, 23rd ed., Washington, DC, pp. 522–527, 2017.

X. Han, Y. Jin, J. Yu, Rapid formation of aerobic granular sludge by bioaugmentation technology: A review, Chem. Eng. J., vol. 437, pp. 134971, 2022.

J. Tao, L. Qin, X. Liu, B. Li, J. Chen, J. You, Y. Shen, X. Chen, Effect of granular activated carbon on the aerobic granulation of sludge and its mechanism, Bioresour. Technol., vol. 236, pp. 60–67, 2017.

X. Shi, J. Li, X. Wang, X. Zhang, L. Tang, Effect of the gradual increase of Na2SO4 on performance and microbial diversity of aerobic granular sludge, J. Environ. Manage., vol. 292, pp. 112696, 2021.

F. Cai, L. Lei, Y. Li, Y. Chen, A review of aerobic granular sludge (AGS) treating recalcitrant wastewater: Refractory organics removal mechanism, application and prospect, Sci. Total Environ., vol. 782, pp. 146852, 2021.

N. Kishida, J. H. Kim, M. Chen, H. Sasaki, R. Sudo, Effectiveness of Oxidation-Reduction Potential and pH as Monitoring and Control Parameters for Nitrogen Removal in Swine Wastewater Treatment by Sequencing Batch Reactors, J. Biosci. Bioeng., vol. 96, no. 3, pp. 285–290, 2003.

R. A. Hamza, O. T. Iorhemen, M. S. Zaghloul, J. H. Tay, Rapid formation and characterization of aerobic granules in pilot-scale sequential batch reactor for high-strength organic wastewater treatment, J. Water Process Eng., vol. 22, pp. 27–33, 2018.

S. K. Ong, Wastewater Engineering. 2007.

D. Obaja, S. Macé, J. Mata-Alvarez, Biological nutrient removal by a sequencing batch reactor (SBR) using an internal organic carbon source in digested piggery wastewater, Bioresour. Technol., vol. 96, no. 1, pp. 7–14, 2005.

Z. Nie, M. Huo, Q. Li, X. Shi, Y. Ma, G. Yu, S. Zhu, S. Ai, F. Wang, D. Bian, Sewage treatment effect of AOA-SBR under different C/P value and its mechanism of nitrogen and phosphorus removal, J. Water Process Eng., vol. 47, pp. 102774, 2022.

Y. Li, M. Zhang, D. Xu, X. Shan, P. Zheng, Potential of anammox process towards high-efficient nitrogen removal in wastewater treatment: Theoretical analysis and practical case with a SBR, Chemosphere, vol. 281, pp. 130729, 2021.

D. Choi, K. Cho, J. Jung, Optimization of nitrogen removal performance in a single-stage SBR based on partial nitritation and ANAMMOX, Water Res., vol. 162, pp. 105–114, 2019.

P. Higgins, ORP Management in Wastewater as an Indicator of Process Efficiency, 2008, [Online], Available: https://www.ysi.com/ysi-blog/water-blogged-blog/2013/08/orp-management-in-wastewater-as-an-indicator-of-process-efficiency

Downloads

Published

2024-04-29

Issue

Section

Articles