Efficiency of FeSO4.7H2O as a Coagulant on Chromium Hexavalent Removal Using Coagulation-Flocculation Process: Optimization Using Response Surface Methodology

Authors

  • Andi Baso Pangeran Mineral Chemical Engineering, Politeknik Industri Logam Morowali, Jl. Trans Sulawesi, Labota, Bahodopi, Morowali, Sulawesi Tengah 94974, Indonesia
  • Moh. Azhar Afandy Mineral Chemical Engineering, Politeknik Industri Logam Morowali, Jl. Trans Sulawesi, Labota, Bahodopi, Morowali, Sulawesi Tengah 94974, Indonesia https://orcid.org/0000-0001-7479-1907
  • Fikrah Dian Indrawati Sawali Mineral Chemical Engineering, Politeknik Industri Logam Morowali, Jl. Trans Sulawesi, Labota, Bahodopi, Morowali, Sulawesi Tengah 94974, Indonesia https://orcid.org/0000-0002-8225-2601

DOI:

https://doi.org/10.33795/jtkl.v7i2.3560

Keywords:

coagulation-flocculation, FeSO4.7H2O, Response Surface Methodology, central composite design

Abstract

Response Surface Methodology-Central Composite Design (RSM-CCD) is widely employed in the process of optimizing the applications of coagulants for wastewater treatment. The experiment aims to evaluate the effect of the FeSO4.7H2O concentration and settling time on removing the chromium hexavalent (Cr (VI)) from wastewater by coagulation-flocculation using RSM-CCD. This experiment was carried out based on the results of the model and optimization using the RSM-CCD to obtain the removal efficiency of Cr (VI) as well as determine the influence of the concentration of FeSO4.7H2O (X1) and settling time (X2). The RSM-CCD experimental design uses a two-factor and two-level design with 13 experimental runs and 5 center points. Inter-variable regression coefficients are also produced with the elimination of Cr (VI). The ANOVA test results showed a fairly significant figure for the assembled model. The model validation results show that the proposed model is compatible with the experimental results. RSM optimization shows optimum conditions based on experimental FeSO4.7H2O coagulant concentration variables and coagulation time at 150 mg/L coagulant concentration and 60 minutes of time, and the prediction results based on RSM-CCD optimization using Design Expert show the most optimum condition at 165,562 mg/L coagulant concentrations and 60,527 minutes of time.

References

K. M. Nahiun, B. Sarker, K. N. Keya, F. I. Mahir, S. Shahida, R. A. Khan, A Review on the Methods of Industrial Waste Water Treatment, Sci. Rev., vol. 7, no. 3, pp. 20–31, 2021.

K. K. Onchoke, S. A. Sasu, Determination of Hexavalent Chromium (Cr(VI)) Concentrations via Ion Chromatography and UV-Vis Spectrophotometry in Samples Collected from Nacogdoches Wastewater Treatment Plant, East Texas (USA), Adv. Environ. Chem., vol. 2016, no. 3468635, pp. 1–10, 2016.

M. N. Georgaki, M. Charalambous, Toxic chromium in water and the effects on the human body: a systematic review, J. Water Health, vol. 21, no. 2, pp. 205–223, 2023.

M. Tumolo, V. Ancona, D. D. Paola, D. Losacco, C. Campanale, C. Massarelli, V. F. Uricchio, Chromium pollution in European water, sources, health risk, and remediation strategies: An overview, Int. J. Environ. Res. Public Health, vol. 17, no. 15, pp. 5438, 2020.

A. Zhitkovich, Chromium in drinking water: Sources, metabolism, and cancer risks, Chem. Res. Toxicol., vol. 24, no. 10, pp. 1617–1629, 2011.

M.-N. Georgaki, M. Charalambous, N. Kazakis, M. A. Talias, C. Georgakis, T. Papamitsou, C. Mytiglaki, Chromium in Water and Carcinogenic Human Health Risk, Environ., vol. 10, no. 2, pp. 33, 2023.

J. Liang, X. Huang, J. Yan, Y. Li, Z. Zhao, Y. Liu, J. Ye, Y. Wei, A review of the formation of Cr(VI) via Cr(III) oxidation in soils and groundwater, Sci. Total Environ., vol. 774, pp. 145762, 2021.

Y. Gu, X. Zhu, Speciation of Cr(III) and Cr(VI) ions using a β-cyclodextrin-crosslinked polymer micro-column and graphite furnace atomic absorption spectrometry, Microchim. Acta, vol. 173, no. 3–4, pp. 433–438, 2011.

D. Mahringer, S. S. Zerelli, U. Dippon, A. S. Ruhl, Pilot scale hexavalent chromium removal with reduction, coagulation, filtration and biological iron oxidation, Sep. Purif. Technol., vol. 253, pp. 117478, 2020.

D. Xu, B. Zhou, R. Yuan, Optimization of coagulation-flocculation treatment of wastewater containing Zn(II) and Cr(VI), IOP Conf. Ser. Earth Environ. Sci., vol. 227, no. 5, pp. 052049, 2019.

B. S. Tarigan, R. Rukiah, A. R. Noviyanti, Komposisi Polialuminium Klorida dengan Hidroksiapatit dan Aplikasinya untuk Pemisahan Ion Kromium Heksavalen, Jurnal Keramik dan Gelas Indonesia, vol. 30, no. 1, pp. 26–34, 2021.

S. Nimesha, C. Hewawasam, D. J. Jayasanka, Y. Murakami, N. Araki, N. Maharjan, Effectiveness of natural coagulants in water and wastewater treatment, Glob. J. Environ. Sci. Manag., vol. 8, no. 1, pp. 101–116, 2022.

B. Othmani, M. G. Rasteiro, M. Khadhraoui, Toward green technology: a review on some efficient model plant-based coagulants/flocculants for freshwater and wastewater remediation, Clean Technol. Environ. Policy, vol. 22, no. 5, pp. 1025–1040, 2020.

T.-H. Ang, K. Kiatkittipong, W. Kiatkittipong, S.-C. Chua, J. W. Lim, P.-L. Show, M. J. K. Bashir, Y.-C. Ho, Insight on Extraction and Characterisation of Biopolymers as the Green Coagulants for Microalgae Harvesting, Water, vol. 12, no. 5, pp. 1388, 2020.

R. M. El-taweel, N. Mohamed, K. A. Alrefaey, S. Husien, A. B. Abdel-Aziz, A. I. Salim, N. G. Mostafa, L. A. Said, I. S. Fahim, A. G. Radwan, A review of coagulation explaining its definition, mechanism, coagulant types, and optimization models; RSM, and ANN, Curr. Res. Green Sustain. Chem., vol. 6, pp. 100358, 2023.

M. Verma, R. Naresh Kumar, Can coagulation–flocculation be an effective pre-treatment option for landfill leachate and municipal wastewater co-treatment?, Perspect. Sci., vol. 8, pp. 492–494, 2016.

Y. Sun, C. Zhu, H. Zheng, W. Sun, Y. Xu, X. Xiao, Z. You, C. Liu, Characterization and coagulation behavior of polymeric aluminum ferric silicate for high-concentration oily wastewater treatment, Chem. Eng. Res. Des., vol. 119, no. 17, pp. 23–32, 2017.

Y. Tang, X. Hu, J. Cai, Z. Xi, H. Yang, An enhanced coagulation using a starch-based coagulant assisted by polysilicic acid in treating simulated and real surface water, Chemosphere, vol. 259, pp. 127464, 2020.

R. Zhang, F. Zhou, L.-Q. Guo, D. Shi, F.-M. Ruan, Y.-G. Gao, Metrology method for Error Vector Magnitude based on ellipse on IQ coordinates, 79th ARFTG Microwave Measurement Conference, Montreal, QC, Canada, pp. 1–4, 2012.

M. O. Agunbiade, C. H. Pohl, A. O. T. Ashafa, A review of the application of biofloccualnts in wastewater treatment, Polish J. Environ. Stud., vol. 25, no. 4, pp. 1381–1389, 2016.

J. Duan, J. Gregory, Coagulation by hydrolysing metal salts, Adv. Colloid Interface Sci., vol. 100–102, pp. 475–502, 2003.

D. P. W. Sheng, M. R. Bilad, N. Shamsuddin, Assessment and Optimization of Coagulation Process in Water Treatment Plant: A Review, ASEAN J. Sci. Eng., vol. 3, no. 1, pp.. 79–100, 2023.

D. Fitria, P. S. R. I. Komala, D. Vendela, Pengaruh Waktu Flokulasi Pada Proses Koagulasi Flokulasi Dengan Biokoagulan Kelor Untuk Menyisihkan Kadar Besi Air Sumur, J. Reka Lingkung., vol. 10, no. 2, pp. 165–174, 2022.

P. L. Hariani, N. Hidayati, M. Oktaria, Penurunan Konsentrasi Cr(VI) Dalam Air Dengan Koagulan FeSO4, J. Penelit. Sains, vol. 12, no. 2, pp. 12208, 2009.

X. Liu, N. Graham, T. Liu, S. Cheng, W. Yu, A comparison of the coagulation performance of PAFC and FeSO4 for the treatment of leach liquor from Stevia processing, Sep. Purif. Technol., vol. 255, pp. 117680, 2021.

M. S. Hossain, S. Al Rashdi, Y. Hamed, A. Al-Gheethi, F. M. Omar, M. Zulkifli, A. N. A. Yahaya, Implementation of FeSO4·H2O as an Eco-Friendly Coagulant for the Elimination of Organic Pollutants from Tertiary Palm Oil Mill Effluent: Process Optimization, Kinetics, and Thermodynamics Studies, Water, vol. 14, no. 22, pp. 3602, 2022.

J. Suquet, L. Godo-Pla, M. Valentí, L. Ferràndez, M. Verdaguer, M. Poch, M. J. Martín, H. Monclús, Assessing the effect of catchment characteristics to enhanced coagulation in drinking water treatment: RSM models and sensitivity analysis, Sci. Total Environ., vol. 799, pp. 149398, 2021.

S. Panić, D. Rakić, V. Guzsvány, E. Kiss, G. Boskovic, Z. Kónya, Á. Kukovecz, Optimization of thiamethoxam adsorption parameters using multi-walled carbon nanotubes by means of fractional factorial design, Chemosphere, vol. 141, pp. 87–93, 2015.

C. Barreto-Pio, L. Bravo-Toledo, P. Virú-Vásquez, A. Borda-Contreras, E. Zarate-Sarapura, A. Pilco, Optimization Applying Response Surface Methodology in the Co-treatment of Urban and Acid Wastewater from the Quiulacocha Lagoon, Pasco (Peru), Environ. Res. Eng. Manag., vol. 79, no. 1, pp. 90–109, 2023.

N. Birjandi, H. Younesi, N. Bahramifar, S. Ghafari, A. A. Zinatizadeh, S. Sethupathi, Optimization of coagulation-flocculation treatment on paper-recycling wastewater: Application of response surface methodology, J. Environ. Sci. Heal. - Part A Toxic/Hazardous Subst. Environ. Eng., vol. 48, no. 12, pp.1573–1582, 2013.

D. Sakhi, A. Elmchaouria, Y. Rakhilaa, M. Abouria, S. Souabib, M. Hamdani, A. Jada, Optimization of the treatment of a real textile wastewater by coagulation– flocculation processes using central composite design, Desalin. Water Treat., vol. 196, pp. 33–40, 2020.

S. Usefi, M. Asadi-Ghalhari, Optimization of turbidity removal by coagulation and flocculation process from synthetic stone cutting wastewater, Int. J. Energy Water Resour., vol. 3, no. 1, pp. 33–41, 2019.

M. Asadi-Ghalhari, S. Usefi, N. Ghafouri, A. Kishipour, R. Mostafaloo, F. sadat Tabatabaei, Modeling and optimization of the coagulation/flocculation process in turbidity removal from water using poly aluminum chloride and rice starch as a natural coagulant aid, Environ. Monit. Assess., vol. 195, no. 4, pp. 527, 2023.

D. Sinkhonde, Generating response surface models for optimisation of CO2 emission and properties of concrete modified with waste materials, Clean. Mater., vol. 6, pp. 100146, 2022.

M. Meriatna, R. Afriani, L. Maulinda, S. Suryati, Z. Zulmiardi, Optimasi Adsorpsi Ion Pb2+ Menggunakankarbon Aktif Sekam Padi Pada Fixed Bed Column dengan Pendekatan RSM (Response Surface Methodology), J. Teknol. Kim. Unimal, vol. 10, no. 1, pp. 100–110, 2021.

K. Laila, D. Darmadi, A. Adisalamun, Pengolahan Limbah Cair Rumah Sakit secara Sonochemical, J. Litbang Ind., vol. 7, no. 1, pp. 29–39, 2017.

P. Qiu, M. Cui, K. Kang, B. Park, Y. Son, E. Khim, M. Jang, J. Khim, Application of Box-Behnken design with response surface methodology for modeling and optimizing ultrasonic oxidation of arsenite with H2O2, Cent. Eur. J. Chem., vol. 12, no. 2, pp. 164–172, 2014.

S. E. Ratnawati, N. Ekantari, R. W. Pradipta, B. L. Paramita, Aplikasi Response Surface Methodology (RSM) pada Optimasi Ekstraksi Kalsium Tulang Lele, J. Perikan. Univ. Gadjah Mada, vol. 20, no. 1, pp. 41–48, 2018.

P. D. Johnson, P. Girinathannair, K. N. Ohlinger, S. Ritchie, L. Teuber, J. Kirby, Enhanced Removal of Heavy Metals in Primary Treatment Using Coagulation and Flocculation, Water Environ. Res., vol. 80, no. 5, pp. 472–479, 2008.

W. Z. Yu, J. Gregory, L. Campos, G. Li, The role of mixing conditions on floc growth, breakage and re-growth, Chem. Eng. J., vol. 171, no. 2, pp. 425–430, 2011.

Downloads

Published

2023-10-29