International Journal of Frontier Technology and Engineering (IJFTE)
Vol. 02, No. 02, June 2024, pp. 87{07]
ISSN: 2986-9064

Implementation of Data Parsing on Arduino Mega and
NodeMCU ESP8266 for Web-Based Monitoring of E-Bike
Charging Station

Aji Nugroho!”, Mohammad Noor Hidayat', and Abdullah Faiq Munir

! Department of Electrical Engineering, Politeknik Negeri Malang, Malang, Indonesia

Corresponding Author: Aji Nugroho, ajinugroho220891@gmail.com
Received Date: 10-03-2024 Revised Date: 16-05-2024 Accepted Date: 21-06-2024

Abstract

The growing trend for electric bicycles in Indonesia requires an efficient monitoring system
for electric bicycle charging stations to ensure optimal performance and timely decision making.
This study focuses on developing and testing a web-based monitoring system utilizing Arduino
Mega and NodeMCU ESP8266 for real-time data transmission and analysis. The system inte-
grates multiple sensors, including ACS712 current sensors, DC voltage sensors, and PZEM004T
sensors, to monitor key parameters such as current, voltage, power, and energy. Data parsing, a
crucial process for efficient transmission, is performed on the Arduino Mega before being sent to
the NodeMCU ESP8266, which then forwards the data to a web server. Research uses the Re-
search and Development (R&D) method, which includes stages of information gathering, system
planning, implementation, and evaluation. Testing revealed that data parsing failures were due
to data loss and format corruption caused by serial communication issues. Various transmission
delays (0 ms, 100 ms, 200 ms and 500 ms) were tested to evaluate their impact on data loss, com-
munication latency, and system responsiveness. The results indicate that a 200-ms delay offers
an optimal balance between data transmission frequency and system stability, with minimal data
loss and stable latency. The study also explored the effects of data reception delays on the web
server, highlighting that lower transmission frequencies result in more stable reception delays and
better overall performance. Efficient use of network resources and responsiveness of the system
were achieved with appropriate delay configurations.

Keywords : Web-based Monitoring System, Data Parsing, Data Transmission, E-Bike Charging

1 Introduction

The trend for electric bicycles in Indonesia is increasing, as evidenced by the sale of electric motorcycles that
reached 62,409 units in 2023 [I]. The popularity of electric bicycles is driven by various factors, including ease
of use, exemption from taxes, and features such as a pedal assist that support battery efficiency. In addition,
electric bicycles are associated with being environmentally friendly, equipped with advanced technologies such
as digital speedometers and alarms, and are easier to maintain. Community support, particularly among
women, also contributes to the growing popularity of electric bicycles [2]. Many cities around the world are
beginning to provide electric bicycle rental stations as part of an integrated public transportation system [3].
However, to ensure the optimal operation of these electric bicycle stations, a reliable and efficient monitoring
system is needed to track key parameters such as battery status, power consumption, and bike conditions in
real-time.

One of the main challenges in the management of electric bicycle stations is to ensure that data collected
from various sensors at the station can be efficiently processed and transmitted to a central control system or a
web-based monitoring platform [4]. An effective approach is to integrate data from multiple sources to improve

Journal homepage: http://jurnal.polinema.ac.id/index.php/IJFTE/index 87

International Journal of Frontier Technology and Engineering (IJFTE) ISSN: 2986-9064

the efficiency of data-driven systems. This study employs the concept of data fusion from information science
and proposes a framework for integrating data from Building Information Modeling (BIM) and the Internet
of Things (IoT). Although these efforts are focused on the Architecture, Engineering and Construction (AEC)
industry, they face challenges related to data heterogeneity and complex processing workflows. A similar
concept can be applied to the monitoring of electric bicycle stations, where data from various sensors must be
efficiently integrated and processed to ensure optimal operations and real-time monitoring [5].

Furthermore, the data parsing process plays a crucial role in transmitting sensor data to a central system.
In Industrial Internet of Things (IIoT) devices, such as in manufacturing, parsing enables raw data from
multiple sensors to be structured efficiently for further processing. A similar approach can be applied to
electric bicycle charging stations, where the parsing of data from sensors such as current, voltage, and power
is critical to reducing communication latency and accelerating decision-making processes [6].

Furthermore, the methods used to parse and classify large-scale texts on the Internet offer valuable infor-
mation to handle large volumes of IoT data generated by electric bicycle stations. Research in the parsing
and classification of large-scale data focuses on efficiently breaking down large data sets into manageable com-
ponents for analysis [7]. Adopting similar techniques in IoT systems can help electric bicycle stations process
vast sensor data streams more efficiently, enabling classification and prioritization of information for real-time
decision making.

Embedding-based approaches, such as those used in Thai dependency parsing with character embedding,
could also be adapted to handle complex sensor data. Embedding sensor data into multidimensional rep-
resentations captures intricate relationships between sensor variables, such as voltage, current, and battery
status, thus improving the system’s ability to interpret and act on the data in real time [§]. In addition,
advanced trie-based parsing algorithms can be used to optimize HTTP communication between microcon-
trollers (such as Arduino Nano) and web servers. By employing trie-based structures for HTTP parsing, the
system can achieve faster and more efficient data transmission, thus minimizing communication overhead and
improving real-time responsiveness [9]. A smart approach to electric vehicle optimization through IoT-enabled
recommender systems could also be applied to electric bicycle monitoring stations [I0]. Using IoT-enabled
recommender systems, operators can optimize battery usage, charging patterns, and energy consumption
through real-time recommendations based on sensor data and environmental conditions. This dynamic ad-
justment ensures maximum efficiency in bicycle operations while extending battery life and reducing energy
consumption.

Furthermore, situation-aware IoT data generation, as discussed in research on the performance evaluation
of IoT middleware platforms, can be applied in electric bicycle monitoring stations [I1]. By generating IoT data
that adapt to real-time conditions, such as changes in battery levels, user activity, or environmental factors, the
system can adjust its monitoring to reflect current circumstances more accurately. This improves performance
optimization and resource allocation, ensuring that the middleware efficiently processes diverse situational
data inputs for system maintenance and decision making. In this regard, it is essential to consider the context
features when parsing data, similar to how action parsing employs context to improve the understanding
of actions in various environments [12]. In this regard, it is essential to consider the context features when
parsing data, similar to how action parsing employs context to improve the understanding of actions in various
environments [I3]. Thus, integrating context-aware parsing, similar to the approach used in action parsing to
interpret raw sensor data within specific contexts, can significantly improve the reliability and responsiveness
of the system.

In this context, the use of microcontrollers such as the Arduino Nano and communication modules such
as the NodeMCU ESP8266 becomes an ideal solution due to their ability to process data from various sensors
and transmit them over the Internet [I4]. The Arduino Nano, which is connected to various sensors, such
as current sensors, voltage sensors, and power sensors, functions as a device to collect and process raw data.
However, these data need to be parsed first to make them more compact and easier to transmit [I5]. Data
parsing is the process of breaking down raw data into manageable parts that can be sent more efficiently. This
process is crucial in reducing the communication load and speeding up data transmission from the Arduino
Nano to the NodeMCU ESP8266 [16]. The NodeMCU ESP8266, with its Wi-Fi connectivity, receives the
parsed data from the Arduino Nano and then forwards it to a web server. Implementing this web-based
system allows electric bicycle station operators to monitor the condition of the bicycles and the station in
real-time from a remote location. In addition, the system can provide notifications or early warnings if there
are conditions that require immediate action, such as low battery levels or system failures. Optimizing the
data parsing process on the Arduino Nano and applying efficient communication protocols on the NodeMCU
ESP8266 are critical steps to ensure the reliability and speed of data transmission. This not only reduces
communication latency, but also minimizes network resource usage, which is essential in an Internet of Things

Vol. 02, No. 02, June 2024 88

International Journal of Frontier Technology and Engineering (IJFTE) ISSN: 2986-9064

(IoT) environment.

Given the need for an efficient and real-time monitoring system, this study focuses on implementing data
parsing between the Arduino Nano and NodeMCU ESP8266 for web-based monitoring of electric bicycle
stations. This research aims to improve the reliability of the system, optimize data management, and support
faster and more accurate decision making in the operation of electric bicycle stations.

2 Method

This research employs the Research and Development (R&D) method with the objective of developing
and testing a new web-based monitoring system for electric bicycle charging stations. The R&D method
is particularly suitable for this study, as it focuses on designing, implementing, and evaluating a system
that integrates the latest technologies in data processing and transmission. The development process will
begin with the collection of data from current, voltage, and power sensors connected to an Arduino Nano
microcontroller. These raw data will be processed and parsed to enhance the efficiency of data transmission
and storage. Subsequently, the parsed data will be transmitted to a NodeMCU ESP8266 module, which will
relay the information to a web server. The monitoring system will undergo comprehensive testing to ensure
data accuracy, communication efficiency, and system reliability under real-world conditions. The evaluations
derived from these tests will provide critical feedback for system improvements and optimizations, ensuring
effective implementation at electric bicycle stations. Using an iterative cycle of testing and evaluation, this
research aims to produce a technological solution that enhances the efficiency of monitoring electric bicycle
stations and supports better operational decision making through an integrated web-based system. The
research stages utilized in this R&D methodology are illustrated in Figure [T}

Research and Information Gathering
Implementation ¢
’ Testing and Evaluation

Figure 1: The research stages used in this research method

This research is carried out through several main structured stages, as illustrated in Figure 1. The first
stage begins with gathering information on the problem at hand and evaluating the requirements for the
devices used and data transmission techniques. This includes analyzing the hardware to be used, appropriate
data transmission methods, and important parameters that need to be monitored, such as current, voltage,
power, and battery status. This process aims to comprehensively understand the specific needs of the system
to be developed, ensuring that each selected component can operate optimally under operating conditions.
Following the information gathering, the next stage involves planning the design of the monitoring system based
on the information collected. This design includes the selection of sensors (such as current, voltage, and power
sensors), the microcontroller (Arduino Nano) and the communication module (NodeMCU ESP8266) that will
be used to collect, process and send data to a web server. The planning phase also includes programming
for data parsing to enhance the efficiency of data transmission and storage. Each step in this planning phase
aims to ensure seamless integration between hardware and software. After the planning is completed, the
implementation step is carried out by building a prototype of the electric bicycle charging station. This
implementation includes connecting the selected sensors to the Arduino Nano, developing a data parsing
program, and configuring the NodeMCU ESP8266 for data transmission to the Web server. The data collected
by the sensors, such as the ACS712 (current sensor), DC voltage sensor, and PZEMO004T, are parsed to allow
more efficient transmission to the NodeMCU via a serial protocol. The NodeMCU then acts as a bridge
between the hardware and the Internet, sending data to the designated web server. The final stage involves
comprehensive testing and evaluation of the developed monitoring system. Testing is carried out under real-
world conditions to ensure data accuracy, transmission efficiency, and overall system reliability. At this stage,
various scenarios are applied, including simulations of low battery conditions, over current, and system failures,
to determine how well the system processes and transmits information from the sensors to the web server.

Vol. 02, No. 02, June 2024 89

International Journal of Frontier Technology and Engineering (IJFTE) ISSN: 2986-9064

Based on the results of the evaluation, improvements and optimizations are made to the system until the
expected performance is achieved.

2.1 System Design

The electric bicycle charging station prototype will be equipped with several sensors to monitor various
important parameters. The sensors used include three ACS712 current sensors, three DC voltage sensors, and
two PZEMOO04T sensors. The functions of each sensor are as follows:

a. ACS712 Current Sensors: These three current sensors are used to monitor the current at three
points:

(1) The current from the Solar Charge Controller (SCC) output to the battery.
(2) The current flowing from the battery to the inverter.
(3) The current generated by the solar panel.

b. DC Voltage Sensors: These three voltage sensors are used to monitor the voltage at three points:

(1) The voltage from the SCC output to the battery.
(2) The voltage flowing from the battery to the inverter.
(3) The voltage generated by the solar panel.

c. PZEMOO04T Sensors: These two sensors will be used to monitor various electrical parameters such as
current, voltage, power, energy, frequency and power factor from two sources:

(1) Electricity from PLN (state-owned electricity company).
(2) Electricity from the inverter output.

The proposed system is integrated with the Internet for real-time data transmission. Data from all sensors
will be sent and displayed through a web server, which will present a visualization of the monitoring data
from the electric bicycle charging station. A block diagram of the proposed electric bicycle charging station
system can be seen in Figure Based on Figure Data processing (data parsing) is performed using Arduino
Mega and NodeMCU ESP8266, and then displayed on a web interface. The monitoring system for the electric
bicycle charging station starts by measuring various parameters using installed sensors. The measured data are
initially processed by the Arduino Mega before being sent to the NodeMCU ESP8266. The NodeMCU acts as
a bridge between the hardware and the internet network, sending data to the web server. The data received by
the web server are then stored in a database for further analysis. Finally, the web server displays the data in an
easy-to-understand visual format, such as graphs or tables, through a web browser, allowing users to monitor
the charging station’s condition in real time. In this study, a serial parsing approach is applied to parse data
from various sensors connected to the electric bicycle charging station. Serial parsing is chosen for its simplicity
and ability to handle sequential data processing from each sensor. Each sensor, such as the voltage, current,
and power sensors, sends data sequentially through the Arduino Nano, which is then processed and forwarded
to the NodeMCU ESP8266 for transmission to the server. The serial parsing approach implemented in this
system offers efficiency in bandwidth usage as well as the capability to handle data from sensors sequentially,
minimizing the risk of data loss during transmission. This enhances the efficiency of real-time monitoring,
which is a novel element compared to previous approaches that relied on parallel parsing methods in a similar
system. Figure [3|shows the circuit diagram of the proposed system.

Based on Figure [3] the Arduino Mega is used as the central controller to connect various sensors and
modules. The voltage sensors are connected to the analog pins of the Arduino Mega, specifically pins AO,
A1, and A2, each linked to the signal pins (S) of the three voltage sensors. For current sensors, three sensors
are connected to the analog pins A3, A4, and A5, with the sensor OUT pins connected to these respective
pins, and the GND and VCC pins of the sensors connected to the corresponding GND and VCC pins of the
Arduino. Two PZEMO004T modules, used for power measurement, are connected to digital pins 10 (TX) and
11 (RX) for the first module, and pins 12 (TX) and 13 (RX) for the second module, with additional VCC
and GND connections from each module to the appropriate pins on the Arduino. The BH1750 light sensor
and the 20x4 LCD display, which use 12C communication, are both connected in parallel to the SDA (pin
20) and SCL (pin 21) pins of the Arduino Mega. The GND and VCC pins of these sensors and modules are
also connected to the GND and VCC pins of the Arduino. The NodeMCU ESP8266, a WiFi module used
for network connectivity, is connected to digital pins 2 (TX) and 3 (RX) for serial communication with the
Arduino Mega, with its GND pin connected to the Arduino GND pin.

Vol. 02, No. 02, June 2024 90

International Journal of Frontier Technology and Engineering (IJFTE) ISSN: 2986-9064

.

NODEMCU ESP8266

v

L}

! '
! 1
! i
! '
1 1
: ELECTRICITY GRID SOLAR PANEL FROM SCC TO BATERAI !
i]
; ¥ ! v :
ACST12 SENSOR AND ACST12 SENSOR AND '

o | PZEMODAT SENSOR DC VOLTAGE SENSCR | | DC VOLTAGE SENSOR !
: :
! 1
! 1
1 '
! i
!]
! i
! i
1 PZEMODAT SENSOR ACST12 SENSOR AND BH1750 LIGHT 1
, DC VOLTAGE SENSOR INTENSITY SENSOR !
1]
| T FROM EAT'I’ERY TO :
! 1
' INVERTER QOUTPUT INVERTER :
l :
']
! 1
1 1
! i
' LCD 20X4 + ARDUING MEGA .
: ;
! 1
1]
1]
1 1
i 1
! 1
! 1
1 1
! 1
! 1
1 1
!]
! 1
! '

ROUTER WIFI
USB MODEM
... ‘ .---.---.-.t...........
(]
DATABASE l— |
] INTERNET

1
]
]
1
DOMAIN NAME SYSTEM |« :
:
I
WEBSERVER 1

Figure 2: Block diagram of the electric bicycle charging station system.

Arduino Mega acts as a data collector for various sensors, while the NodeMCU ESP8266 is responsible
for parsing and sending the data to a web server. Communication between Arduino Mega and NodeMCU
ESP8266 is established through a serial protocol using the SoftwareSerial library. In the code, pin 2 (RX) and
pin 3 (TX) on the Arduino Mega are designated as data communication lines with the NodeMCU. The data
sent from the Arduino Mega are packaged in a string format organized using a delimiter. In this case, the
chosen delimiter is a comma (,), which serves as a separator between data elements within the string. The
choice of this delimiter aims to facilitate the parsing process on the NodeMCU, allowing each data element
to be identified and processed more efficiently. With this format, data communication between the Arduino
Mega and NodeMCU becomes more structured, enabling faster and more accurate information processing on
the NodeMCU side. An example of the code implementation is as follows :

Vol. 02, No. 02, June 2024 91

N

© 0 N G A W N e

e e
L <)

International Journal of Frontier Technology and Engineering (IJFTE) ISSN: 2986-9064

- -
A

Figure 3: Wiring diagram of the E-bike charging station monitoring system design.

void kirimdata3() String dataKirim = String(kalibrasiteganganl) + "," + String(
arussensorl) + "," + String(voltage) + "," + String(current) + "," + String(
power) ;

senddata.println(dataKirim) ;

}

Listing 1: Sending data code

The next step is the data parsing process on the NodeMCU ESP8266. The NodeMCU receives the string
data sent from the Arduino Mega via the serial port, where these data are first stored in a buffer to ensure
that the entire data have been received completely before parsing is performed. This parsing process involves
breaking down the string based on the previously specified delimiter, which is the comma (,). Each separated
data element is then identified and broken down into smaller parts. Each of these parts of the data is stored
in the appropriate variables, allowing the data to be accessed and processed according to the needs of the
application. With this approach, the NodeMCU can manage and interpret data more effectively, ensuring that
the information received can be used for decision making or device control with high precision. An example
of a code implementation is as follows:

String receivedData = ""; // buffer data
String voltage, current, power;

void loop() {
if (senddata.available()) {
receivedData = senddata.readStringUntil(’\n’); /
int indexl = receivedData.index0f(’,’);
int index2 = receivedData.index0f(’,’, indexl + 1);

voltage = receivedData.substring(0, indexl);
current = receivedData.substring(indexl + 1, index2);
power = receivedData.substring(index2 + 1);

Listing 2: Parsing data code

After the data are successfully parsed from various sensors connected to the Arduino Mega, the next step is to
transfer the data to the server for monitoring and further processing. The data transfer process is carried out
using an HTTP GET request, which is one of the primary methods in the HT'TP protocol for sending data from
a client to a server. To facilitate and automate this data transfer, a specific function called kirimKeServer()

Vol. 02, No. 02, June 2024 92

[V

© o N O e W

International Journal of Frontier Technology and Engineering (IJFTE) ISSN: 2986-9064

was created. This function is responsible for initiating and executing the process of sending the parsed data
to the web server. Within the kirimKeServer() function, the data generated by the sensors, which has been
parsed into the appropriate format, is organized into a query string that conforms to the GET request format.
This query string is then sent to the server through a pre-defined URL. The use of HT'TP GET requests within
the kirimKeServer() function allows data to be sent quickly and efficiently, and also simplifies debugging and
monitoring processes, as the sent data can be viewed directly through a browser or other monitoring tools.
An example of the code implementation is as follows :

void kirimkeserver () HTTPClient http;

getData = "7data3=" + data3 + "\&data4=" + datad + "\&datab=" + datab + ... + "\&
data2b5=" + data25;
Link = "http://sistemmonitoringspsl.com/receive" + getData;

http.begin(client, Link);

int httpCode = http.GET();

String payload = http.getString();
Serial.println(httpCode);
Serial.println(payload) ;
http.end () ;

Listing 3: Server sending data code

The success of the parsing process is crucial because it determines the accuracy of the data sent to the
web server for monitoring purposes. Properly parsed data ensure that every piece of information received
by the server is valid and can be processed correctly. Once the data are received, the web server stores and
displays them in an easily understandable data visualization format, as shown in Figure 3. In this figure,
data from the monitoring devices are presented in an interactive dashboard that includes information about
voltage, current, power, energy, and the status of various resources, such as photovoltaic (PV), batteries, PLN
power source, and inverters. This visualization helps users monitor system performance in real time and make
quick decisions based on current operational conditions. To enhance novelty, this system also implements an
adaptive parsing method, in which the parsing algorithm dynamically adjusts the parsing method based on
network conditions. When the system detects high latency, the data transmission frequency is automatically
reduced to lessen the network load without compromising the overall accuracy of the monitoring data. Figure
[shows the interface of the web server.

3 Result and Discussion

3.1 Data parsing failure

In the testing of the web-based E-Bike charging station monitoring system, several failures were identified
in the data parsing process between the Arduino Mega and NodeMCU ESP8266. These failures occurred pri-
marily during data transmission from the Arduino Mega to the NodeMCU ESP8266 via serial communication.
An example of a parsing failure is shown in Figure

The following are the specific findings identified during the testing:

(1) Data Loss During Transmission
There were several instances where data sent from the Arduino Mega was not completely received by the
NodeMCU ESP8266. This occurred due to interference in the serial connection or a full communication
buffer on the NodeMCU. As a result, the data received by the NodeMCU did not match the expected
format, leading to parsing errors.

(2) Parsing Errors Due to Corrupted Data
Parsing errors often occurred when the data received by the NodeMCU ESP8266 did not match the
desired format. For example, when the delimiter character used to separate each data element was not
properly detected, the parsing process produced incorrect values or failed to extract the data entirely.
This error was caused by signal interference or mismatched baud rates between the two devices.

3.2 The Impact of Data Transmission Delays

In the testing of the Web-based E-Bike charging station monitoring system, experiments were conducted to
measure the impact of applying delays in data transmission between Arduino Mega and NodeMCU ESP8266.

Vol. 02, No. 02, June 2024 93

International Journal of Frontier Technology and Engineering (IJFTE) ISSN: 2986-9064

SUMBER PLN

SUMBER INVERTER

ot B A Tegaragan . Diryea A Frtusmal

Figure 4: Web server interface visualizing the data received for monitoring electric bicycle stations.

The aim of this experiment was to determine the optimal delay configuration to reduce communication latency,
prevent data loss, and ensure efficient use of network resources. Several delay scenarios were applied to the
Arduino Mega code before transmitting the data to the NodeMCU ESP8266. The delays ranged from 0
ms (without delay), 100 ms, 200 ms, to 500 ms. The test was carried out by sending data from various
sensors (ACS712, DC voltage sensor, PZEMO004T) at different time intervals, monitoring the impact on data
transmission speed, accuracy, and network utilization. The test data is presented in Table .

Table 1: Test Results on the Impact of Data Transmission Delays

Delay | Data | Communication Data System
(ms) | loss Latency (ms) | Transmission responsiveness
0 15% High Very High Very low, frequent data loss
100 10% High High Low
200 | <2% | Stable (50 ms) Optimal Optimal for real-time monitoring
500 <1% Stable Low Slow, less responsive

Testing also revealed that with a longer delay (500 ms), the utilization of network bandwidth became more
efficient. The transmitted data placed less stress on the Wi-Fi network and the use of network resources, such
as buffers and memory on the NodeMCU ESP8266, was reduced by up to 30%. However, despite the lower

Vol. 02, No. 02, June 2024 94

International Journal of Frontier Technology and Engineering (IJFTE) ISSN: 2986-9064

ATE i & fors i re BV 'R L el

Figure 5: Example of a parsing failure in the data received by NodeMCU ESP8266.

resource usage, the system’s responsiveness to changes in conditions became slower. In contrast, with delays
of 0 or 100 ms, the usage of network resources increased by up to 45% compared to delays of 200 or 500 ms,
leading to a higher risk of buffer overflow and data loss. This indicates that overly short delays are not ideal
for applications requiring stable and reliable data transmission.

3.3 Delay in Data Reception on the Web Server

Testing was conducted to measure the data reception delay on the Web server after the data were sent by
the NodeMCU ESP8266. The results indicated that several factors influenced this delay, such as the amount
of data transmitted, the processing capacity of the Web server, and the efficiency of the network. The test
results are presented in Table 2]

Table 2: Test Results of Data Reception Delays on the Web Server

Transmission | Average Reception Maximum
delay delay (ms) fluctuation (ms)
0 ms 120 180
100 ms 90 150
200 ms 30 Minimal
500 ms 20 Almost no fluctuation

Based on Table as the data transmission frequency increases (with 0 ms and 100 ms transmission
delays from the NodeMCU), there is a significant rise in data reception delays on the web server. In this
test, the average data reception delay reached 120 ms with fluctuations up to 180 ms during data surges for
a 0 ms transmission delay. For a 100-ms transmission delay, the average reception delay was 90-ms, with
fluctuations up to 150-ms. When examining the impact of the processing capacity of the web server, the lower
transmission frequencies (200 ms and 500 ms) resulted in more stable reception delays on the web server. With
a 200 ms transmission delay, the average reception delay was 30 ms with minimal fluctuation, and for a 500
ms transmission delay, the average delay was 20 ms with almost no fluctuation. In addition, the efficiency of
the network and connection conditions was tested to assess their effect on data reception delays. Under stable
and low-latency network conditions, the average reception delay was 20-30 ms. However, in high-latency or
unstable network environments, reception delays increased to between 120 and 200 ms.

Data reception delays on the web server affect the update of data displays on the monitoring dashboard.
When reception delays exceed 100 ms, there is a noticeable lag in the information updates visible to users,
particularly under less stable network conditions. However, with an average reception delay of 30 ms or less,

Vol. 02, No. 02, June 2024 95

International Journal of Frontier Technology and Engineering (IJFTE) ISSN: 2986-9064

the system is able to display data nearly in real time, allowing users to respond more quickly and accurately
to emergency conditions.

4 Conclusion

The conclusions of this research indicate that optimizing a web-based monitoring system for electric bicycle
charging stations can be achieved through appropriate data transmission delay configurations and the use of
an efficient serial parsing method. With an optimal transmission delay of 200 ms, data loss was significantly
reduced to below 2%, while communication latency stabilized at 50 ms, ensuring that the system remains
responsive under real-time monitoring conditions. Furthermore, higher transmission delays enhanced network
resource utilization efficiency, although it slightly reduced system responsiveness. The test results also showed
that lower transmission delays increased data reception latency at the web server, whereas the optimal delay
ensured more stable and nearly real-time data reception. Overall, this study contributes to the development
of a more efficient and reliable monitoring system, with broader implications for the application of Internet of
Things (IoT) technology in real-time monitoring systems.

References

[1] N. P. Nugroho. (2024) Populasi kendaraan listrik meningkat pesat, roda dua naik 262
persen. Accessed: 03-Sep-2024. [Online]. Available: https://bisnis.tempo.co/read /1839797 /
populasi-kendaraan-listrik-meningkat- pesat-roda-dua-naik-262-persen

[2] A. Yulianti. (2023) Maraknya sepeda listrik di indonesia? Accessed: 03-Sep-2024. [Online]. Available:
https://serbasepeda.com/blogs/popularitas-sepeda-listrik /

[3] T. Bielinski, A. Kwapisz, and A. Wazna, “Electric bike-sharing services mode substitution for driving,
public transit, and cycling,” Transportation Research Part D: Transport and Environment, vol. 96, 2021.

[4] S. Dasi, S. M. Kuchibhatla, M. Ravindra, K. S. Kumar, S. S. Chekuri, and A. K. Kavuru, “Iot-based smart
energy management system to meet the requirements of ev charging stations,” Journal of Theoretical and
Applied Information Technology, vol. 102, no. 5, pp. 2116-2127, 2024.

[5] X. Huang, Y. Liu, L. Huang, E. Onstein, and C. Merschbrock, “Automation in construction bim and
iot data fusion: The data process model perspective,” Automation in Construction, vol. 149, p. 104792,
2023.

[6] R. Mharaj, V. Balyan, and M. T. Kahn, “Design of iiot device to parse data directly to scada systems
using lora physical layer,” International Journal of Smart Sensing and Intelligent Systems, vol. 15, no. 1,
2022.

[7] M. Song, H. Zheng, Z. Tao, J. Jiang, and B. Pan, “Research on methods of parsing and classification of
internet super large-scale texts,” in Proceedings of an International Conference, 2021.

[8] S. Singkul and K. Woraratpanya, “Thai dependency parsing with character embedding,” in 11th Inter-
national Conference on Information Technology and Electrical Engineering (ICITEE), vol. 7, 2019, pp.
1-5.

[9] A. Li, D. He, and H. Wang, “An advanced trie-based http parsing algorithm,” in Sizth International
Conference on Information Science and Technology, 2016.

[10] P. Amudhavalli, R. Zahira, S. Umashankar, and X. N. Fernando, “A smart approach to electric vehicle
optimization via iot-enabled recommender systems,” Technologies, vol. 12, no. 137, pp. 1-21, 2024.

[11] S. Mondal, P. P. Jayaraman, P. D. Haghighi, A. Hassani, and D. Georgakopoulos, “Situation-aware iot
data generation towards performance evaluation of iot middleware platforms,” Sensors, vol. 23, no. 7, pp.
1-32, 2023.

[12] D. Evans, “Energy-efficient transaction serialization for iot devices,” Journal of Computer Science Re-
search, vol. 2, no. 2, pp. 1-16, 2020.

[13] N. Mehrseresht, “Action parsing using context features,” in International Conference on Digital Image
Computing: Techniques and Applications (DICTA), 2017.

[14] F. Zaro, A. Tamimi, and A. Barakat, “Smart home automation system,” International Journal of Engi-
neering and Innovative Research, vol. 3, no. 1, pp. 6688, 2021.

Vol. 02, No. 02, June 2024 96

https://bisnis.tempo.co/read/1839797/populasi-kendaraan-listrik-meningkat-pesat-roda-dua-naik-262-persen
https://bisnis.tempo.co/read/1839797/populasi-kendaraan-listrik-meningkat-pesat-roda-dua-naik-262-persen
https://serbasepeda.com/blogs/popularitas-sepeda-listrik/

International Journal of Frontier Technology and Engineering (IJFTE) ISSN: 2986-9064

[15] F. Palaha, E. Ermawati, M. Machdalena, and E. H. Arya, “Analisa traffic data esp8266 pada kontrol dan
monitoring daya listrik menggunakan aplikasi blynk berbasis arduino nano,” Jurnal Nasional Komputasi
dan Teknologi Informasi, vol. 4, no. 6, pp. 480-489, 2021.

[16] A. Herlan, I. Fitri, and R. Nuraini, “Rancang bangun sistem monitoring data sebaran covid-19 secara
real-time menggunakan arduino berbasis internet of things (iot),” Jurnal Teknologi dan Informasi, vol. 5,
no. 2, pp. 206-212, 2021.

Vol. 02, No. 02, June 2024 97

	Introduction
	Method
	System Design

	Result and Discussion
	Data parsing failure
	The Impact of Data Transmission Delays
	Delay in Data Reception on the Web Server

	Conclusion

