Journal PROKONS

Volume 19, Number 2 (August 2025) doi:10.33795/Prokons

ISSN: 1978-1784 (p); 2714-8815 (e)

https://jurnal.polinema.ac.id/index.php/PROKONS/

Submitted: 2025-08-22 Revised: 2025-09-02 Accepted: 2025-10-10

EVALUATION OF THE EFFECTIVENESS OF STRUCTURAL CALCULATION FOR THE ISLAMIC AMINAH HOSPITAL BUILDING USING PROFESSIONAL STRUCTURAL ANALYSIS ROBOT APPLICATION

Hariyadi^{1*}, Nurjanah^{2*}, Hangga Prima Setiawan³

¹³Faculty of Engineering, Islamic University of Balitar, Blitar
²Industrial Engineering Department, Study Program of Road and Bridge Construction Engineering, Tanah Laut Polytechnic

*Corresponding Author: Hariyadi.sipil@gmail.com

ABSTRACT

The building structure plays a crucial role in ensuring the safety, comfort, and resilience of buildings, especially in earthquake-prone areas like Indonesia. This study aims to evaluate the effectiveness of structural calculations in the construction of the Aminah Islamic Hospital building in Blitar City using Robot Structural Analysis Professional software. The structural calculations refer to the Indonesian National Standards, namely SNI 2847:2019 for reinforced concrete structures, SNI 1726:2019 for earthquake resistance planning, and SNI 1727:2020 for minimum loading. The focus of the study is limited to the upper structure, including column and beam elements. The evaluation results show that the building structure is designed effectively and meets the criteria for strength and earthquake resistance according to applicable standards. The use of this software is assessed to enhance accuracy and efficiency in the structural planning process. This research is expected to serve as a reference in the planning and design of multi-storey buildings, especially health facility buildings, so that it can provide optimal protection for building users.

Keywords: Reinforced concrete structure, Robot Structural Analysis, SNI 2847:2019, SNI 1726:2019, hospital, structural analysis.

Introduction

The building structure is a system composed of a series of structural components designed to safely bear and transfer loads into the ground. Understanding building structures is very important in planning and construction to ensure the safety, comfort, and durability of the building. Structures generally consist of two parts: the substructure, or the structure located below the ground surface, such as foundations, and the superstructure, or the structure located above the ground surface, such as columns, beams, and slabs (Sijabat et al. 2021).

Live load is a significant burden and its position can vary. This load includes the weight of humans, movable furniture, vehicles, and other items that frequently change locations, thereby causing alterations in the load on the floor and roof. Specifically, for roofs, live loads can include loads from rainwater, whether due to pooling or from the impact of falling raindrops. Live loads do not include wind loads, seismic loads, or special loads. The definition of live load according to article 4.1 of SNI 1727 of 2020 is the load caused by users and occupants of a building or other structure that does not include structural loads and environmental loads (Indonesian Standardization Agency, 2020).

The Earthquake Load is all equivalent static loads acting on a building or part of a building that mimic the effects of ground motion due to the earthquake. In the case where the influence of the earthquake on the building structure is determined based on a dynamic analysis, what is meant by earthquake load here are the forces within that structure caused by the ground motion due to the earthquake (Sijabat et al, 2021).

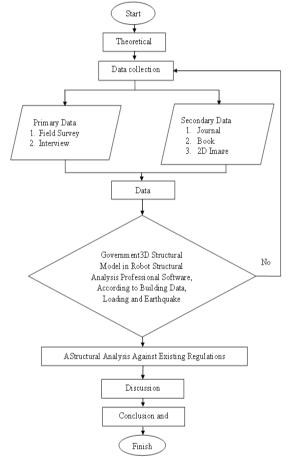
Indonesia is located at the meeting point of three tectonic plates: the Indo-Australian Plate, the Eurasian Plate, and the Pacific Plate, thus situated in the Pacific Ring of Fire. The Pacific Ring of Fire is a region that stretches approximately 40,250 kilometers around the Pacific Ocean. The shape of the Pacific Ring of Fire resembles a horseshoe rather than a circle. (Raihan Daffa Hukama, Erizal, 2023).

In 2021, the Blitar Regency experienced an earthquake with a magnitude of 5.9 on the Richter scale. The epicenter of the earthquake was located at coordinates 8.63° S and 112.34° E, or precisely in the sea at a distance of 57 km southeast of Blitar Regency, East Java, at a depth of 110 km. The impact of the earthquake caused buildings to sustain light, moderate, and severe damage, and this earthquake was caused by the subduction of the Indo-Australian Plate beneath the Eurasian Plate at a rate of about 7 cm per year to the north. For this reason, buildings located in the Pacific Ring of Fire must meet earthquake-resistant building standards (BMKG).

The calculation of reinforced concrete structures in Indonesia uses the reference of the Indonesian National Standard (SNI). There are several references that can be used in the calculation of structures in Indonesia, one of which is SNI 2847 – 2019 and SNI 1726 – 2019 regarding earthquake resistance planning for building and non-building structures. In this case, what needs to be calculated are the reinforced concrete elements (foundations, columns, beams, and slabs). Load calculations must use the regulations stated in SNI 1727-2020 concerning Minimum Loads for Structural and Non-Structural Building Planning.

The use of the Robot Structural Analysis Professional application, a structural analysis and design software based on the Finite Element Method developed by Autodesk and widely used in the design of multi-story buildings. This software is capable of analyzing the detailed behavior of structures under various types of loads, including gravitational loads, lateral loads such as earthquakes and wind, as well as complex load combinations that often occur in tall buildings. RSAP supports both linear and non-linear analysis and can model structural elements such as beams, columns, floor slabs, and shear walls.

three-dimensional. In addition, its integration with Autodesk Revit allows for efficient coordination in a BIM environment, speeding up the design process and minimizing errors. With support for various international design standards and comprehensive analysis reporting features, RSAP becomes an effective tool for producing safe, efficient, and code-compliant designs for multi-story buildings. Therefore, the use of RSAP in this research aims to obtain accurate and applicable analysis results for multi-story building structures (Dyfiantifa et al, 2025).


Materials and Methods

The location and time of this research are situated at Aminah Hospital in Blitar City. This research is conducted to evaluate the effectiveness of the structure to determine its compressive strength. The research location is on Kenari Street in Blitar City as shown in Figure 1 below:

Figure 1 Location of the Aminah Hospital Construction (Source: Google Earth)

Research Concept Flowchart

Data Analysis TechniquesThe data analysis technique used in this thesis is quantitative analysis. Data analysis is a technique for analyzing data in numerical form. Quantitative analysis aims to produce findings that can be generalized, which means they can be applied broadly. The analytical technique in this thesis has several stages. The stages that need to be carried out include:

Data Processing Data processing is conducted when all secondary data required is deemed sufficient. This data

processing involves the calculation of the building structure for the Islamic Hospital Aminah construction in Blitar City, assisted by Robot Structural Analysis Professional software.

Data AnalysisThe results obtained from data processing are then analyzed. The data analysis used is through the Robot Structural Analysis Professional application using the Analysis Design method. The data processing analysis stage is also assisted by the Robot Structural Analysis Professional application. The following are the steps for data analysis:

- 1. Structural modeling in RSAP softwareThe creation of a structural model for the Islamic Aminah Hospital building with 3D modeling according to the working drawings (Shop drawing). In the software, it is assumed that the Z-axis is the vertical axis. The global Z-axis is the vertical axis that has an upward direction, and the X-Y axes form a horizontal plane.
 - a. Open the RSAP application and then click New. Then select the type of structure you want to use. Then select Frame 3D Design. Click Axis Definition to create a grid first. This is done to make drawing easier. After it's filled, click Apply.
 - b. Draw the beams and columns that have been set previously. Geometry > Beam > Select the size of the beam you want to use > Connect the beam by clicking the joint from
 - c. the column of the other columns according to the working drawing. Next, draw the beam on the sheet.
 - d. Furthermore, the 3D structure modeling image

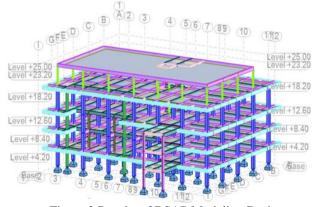


Figure 2 Results of RSAP Modeling Design

2. Load CalculationLoad calculations – the loads acting on the structure include dead load, live load, and earthquake load.

Results

Results of the RSAP 2024 Structure Analysis Based on the three-dimensional structural modeling using the Robot Structural Analysis Professional application, the ultimate moments can be seen in Figure 3 as follows:

The loading calculated based on the existing modeling where loads in the RSAP program are entered as load types.

3. Analysis

- The analysis is conducted after the loads are entered into the RASP software by clicking Calculation, resulting in the maximum moment.
- Select one member such as a Beam to design reinforcement > Design > Provided Reinforcement of RC element.
- c) To see whether the beam is OK or not, it can be checked through Beam Note.
- Repeat the steps as in points b and c for each type of beam or column.

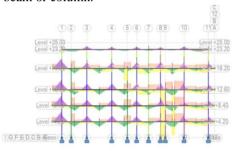


Figure 3 Results of Robot Structural Analysis Professional Analysis

(Source: RSAP Application, 2024)

Structural Analysis Results on Beams

After the author analyzed the results of the structural calculations usingRobot Structural Analysis Professional with concrete quality fc' 30 Mpa and steel reinforcement quality (fy), flexural reinforcement 420 Mpa, shear reinforcement 300 Mpa obtained the results of the ultimate moment and the results of the beam reinforcement shown in Table 1 as follows:

Table 1 Beam Moments and Reinforcement

Information	Moment	Reinforcement			
B1 (400 x	206.26 kNm	Tul. Longitudinal 12D19			
700) mm		Tul. Transvesal D10 – 150			
		(Lap.)			
		Tul. Transvesal D10 – 100			
		(Tump.)			
B2 (400 x	91.18 kNm	Tul. Longitudinal 9D19			
700) mm		Tul. Transvesal D10 – 150			

		(Lap.) Tul. Transvesal D10 – 100
		(Tump.)
B3 (300 x	77.67 kNm	Tul. Longitudinal 9D19
700) mm		Tul. Transvesal D10 – 150
,		(Lap.)
		Tul. Transvesal D10 – 100
		(Tump.)
B4 (550 x	234.17 kNm	Tul. Longitudinal 15D19
850) mm	23 / KI (III	Tul. Transvesal D10 – 150
050) IIIII		(Lap.)
		Tul. Transvesal D10 – 100
		(Tump.)
B5 (400 x	170.06 kNm	Tul. Longitudinal 9D19
800) mm	1 / U.UU KINIII	Tul. Transvesal D10 – 150
800) IIIII		(Lap.)
		Tul. Transvesal D10 – 100
		(Tump.)
B6 (400 x	3.34 kNm	Tul. Longitudinal 9D19
B6 (400 x 700) mm	5.54 KINIII	Tul. Transvesal D10 – 150
700) IIIII		
		(Lap.) Tul. Transvesal D10 – 100
D7 (200	52 92 I-N	(Tump.)
B7 (200 x	52.82 kNm	Tul. Longitudinal 6D16 Tul. Transvesal D10 – 150
700) mm		
		(Lap.)
		Tul. Transvesal D10 – 100
DO (250	0.061.N	(Tump.)
B8 (250 x	0.86 kNm	Tul. Longitudinal 4D16
500) mm		Tul. Transvesal D10 – 150
		(Lap.)
		Tul. Transvesal D10 – 100
DO (200	122.00	(Tump.)
B9 (300 x	-123.90	Tul. Longitudinal 6D16
700) mm	kNm	Tul. Transvesal D10 – 150
		(Lap.)
		Tul. Transvesal D10 – 100
D10 (200	01.51.137	(Tump.)
B10 (300 x	21.51 kNm	Tul. Longitudinal 8D19
700) mm		Tul. Transvesal D10 – 150
		(Lap.)
		Tul. Transvesal D10 – 100
		(Tump.)

(Source: RSAP Application Output Results)

Based on Table 1 above, the author can explain that the type B1 beam with dimensions (400 x 700) mm has an ultimate moment or MU of 206.26 kNm with the main reinforcement using threaded iron with a diameter of 19 mm with a total of 12 rods and for the stirrup reinforcement using threaded iron with a reinforcement diameter of D10 with a distance of fifteen centimeters (15) cm in the field direction,

a distance of ten centimeters (10) cm in the support direction.

In the type of Beam 2 size (400 x 700) mm has an ultimate moment/Mu of 91.18 kNm with reinforcement with the main reinforcement using threaded iron with a diameter of 19 mm with a total of 9 rods and for the reinforcement of the stirrups/begel using threaded iron with a reinforcement diameter of D10 with a distance of fifteen centimeters (15) cm in the direction of the field, a distance of ten centimeters (10) cm in the direction of the support.

Furthermore, the ultimate moment /Mu of Beam 3 (300 x 700) mm has an ultimate moment /Mu of 77.67 kNm with reinforcement using threaded iron with a diameter of 19 mm with a total of 9 bars and for the reinforcement of stirrups / stirrups using threaded iron with a reinforcement diameter of D10 with a distance of fifteen centimeters (15) cm in the field direction, a distance of ten centimeters (10) cm in the support direction.

For Mu or the ultimate moment on Beam 4 (550 x 800) mm is 234.17kNm with reinforcement with main reinforcement using threaded iron with a diameter of 19 mm with a total of 15 bars and for the reinforcement of stirrups/begel using threaded iron with a reinforcement diameter of D10 with a distance of fifteen centimeters (15) cm in the field direction, a distance of ten centimeters (10) cm in the direction.

Then Mu or the ultimate moment on Beam 5 (400 x 800) mm is 170.06 kNm with reinforcement with the main reinforcement using threaded iron with a diameter of 19 mm with a total of 9 rods and for the reinforcement of the stirrups/begel using threaded iron with a reinforcement diameter of D10 with a distance of fifteen centimeters (15) cm in the direction of the field, a distance of ten centimeters (10) cm in the direction of the support.

In Beam 6 (400 x 700) mm the ultimate moment is 3.34 kNm with reinforcement with main reinforcement using threaded iron with a diameter of 19 mm with a total of 9 bars and for the stirrup reinforcement using threaded iron with a reinforcement diameter of D10 with a distance of fifteen centimeters (15) cm in the field direction, a distance of ten centimeters (10) cm in the support direction.

Furthermore, the ultimate moment on Beam 7 (200 x 700) mm is 52.82 kNm with reinforcement using threaded iron with a diameter of 16 mm with a total of 6 bars and for the stirrup reinforcement using threaded iron with a reinforcement diameter of D10 with a distance of fifteen centimeters (15) cm in the field direction, a distance of ten centimeters (10) cm in the support direction.

The Mu or ultimate moment on Beam 8 (250 x 500) mm is 0.86 kNm with reinforcement using threaded iron with a diameter of 16 mm with a total of 4 rods and for the reinforcement of the stirrups/stirrups using threaded iron with a reinforcement diameter of D10 with a distance of fifteen centimeters (15) cm in the field direction, a distance

of ten centimeters (10) cm in the support direction.

For the minimum Mu on Beam 9 (300 x 700) mm is -239.90 kNm with reinforcement with main reinforcement using threaded iron with a diameter of 16 mm with a total of 6 rods and for the reinforcement of stirrups/stirrups using threaded iron with a reinforcement diameter of D10 with a distance of fifteen centimeters (15) cm in the direction of the field, a distance of ten centimeters (10) cm in the direction of the support.

Meanwhile, in Beam 10 (300 x 700) mm, the ultimate moment is 21.51 kNm with reinforcement using threaded iron with a diameter of 19 mm with a total of 8 rods and for the reinforcement of stirrups/stirrups using threaded iron with a reinforcement diameter of D10 with a distance of fifteen centimeters (15) cm in the field direction, a distance of ten centimeters (10) cm in the direction of the support. The results of the beam reinforcement using the RSAP application can be seen in Figure 4 as follows:

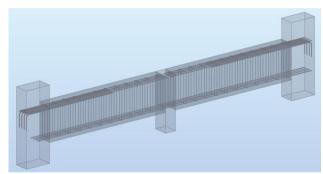


Figure 4 Beam Reinforcement Image Using RSAP 2024
Application
(Source: RSAP Application, 2024)

Results of Structural Analysis on Columns

After analyzing the results of the structural calculations on the beam, the author continued to analyze the column structure using Robot Structural Analysis Professional with concrete quality fc' 30 Mpa and steel reinforcement quality (fy), flexural reinforcement 420 Mpa, shear reinforcement 300 Mpa and obtained the results of the ultimate moment and column reinforcement results shown in Table 2 as follows:

Table 2 Column Moments and Reinforcement

Information	Moment	Reinforcement
K1 (700 x 700)	166.88 kNm	Tul. Longitudinal
mm		20D19
		Tul. Transvesal
		D10 – 100 (Tump)
		Tul. Transvesal
		D10 – 150 (Lap)
		Tul. Hook D10 -

		150			D10 – 150 (Lap)
K2 (700 x 700)	81.79 kNm		KL (250 x 400)	11.53 kNm	Tul. Longitudinal
mm		20D19	mm		14D10
		Tul. Transvesal			Tul. Transvesal
		D10 – 100 (Tump)			D10 – 100 (Tump)
		Tul. Transvesal			Tul. Transvesal
		D10 – 150 (Lap)			D10 – 150 (Lap)
		Tul. Hook D10 - 150	(Source: RSAP App	lication Output Resu	lts)
K3 (700 x 700)	0.36 kNm	Tul. Longitudinal	Based on Table	2, the results of th	e column structure
mm		20D19		that the ultimate mo	
		Tul. Transvesal		K1 with dimension	
		D10 – 100 (Tump)		the main reinforce	_
		Tul. Transvesal		on, 20 lengths with s the distance betwee	
		D10 – 150 (Lap)			ten centimeters (10)
		Tul. Hook D10 -		column reinforcen	
V4 (700 - 700)	6 10 l-N	Tul Longitudinal		a spacing of thirty (30	
K4 (700 x 700) mm	6.10 kNm	Tul. Longitudinal 20D19	In Column 2 (700	0×700) mm, the ulti	mate moment in the
111111		Tul. Transvesal		kNm with the main	
		D10 – 100 (Tump)		r threaded iron,	
		Tul. Transvesal		n a diameter of 10 p/begel is fifteen cer	
		D10 – 150 (Lap)		meters (10) at the	
		Tul. Hook D10 -		g 10 mm diameter iro	
		150	thirty (30) cm.		
K5 (600 x 600)	8.92kNm	Tul. Longitudinal		Column 3 (700 x 7	00) mm, it has an
mm		12D19		the z / Mz direction of	
		Tul. Transvesal		using 19 mm diame	
		D10 – 100 (Tump)		os/begels with a dian	
		Tul. Transvesal		centimeters (10) at the	teen centimeters (15)
		D10 – 150 (Lap) Tul. Hook D10 -		g 10 mm diameter iro	
		150	thirty (30) cm.	, 10 11111 0111110101 11	or wrom a spaceting or
K6 (400 x 700)	4.27 kNm	Tul. Longitudinal		00 x 700) mm, it ha	s a moment of 6.10
mm		12D19		n reinforcement usir	
		Tul. Transvesal		ngths with stirrups/be	
		D10 – 100 (Tump)		nce between each sti	
		Tul. Transvesal		the field and ten cer reinforcement usin	
		D10 – 150 (Lap)	iron with a spacing		5 10 mm diameter
		Tul. Hook D10 -		mn 5 (600 x 600) m	m is 8.92 kNm with
W7 (D)	51 141 N	150	the main reinforcem	nent using 19 mm dia	meter threaded iron,
K7 (Diameter	51.14 kNm	Tul. Longitudinal		th stirrups/stirrups w	
600) mm		10D19 Tul. Transvesal		between each stirre	
		Tul. Transvesal D10 – 100 (Tump)		the field and ten cer	
		Tul. Transvesal	iron with a spacing	of thirty (30) cm	ig 10 mm diameter
		D10 – 150 (Lap)		$5 (400 \times 700) \text{ mm is}$	4.27 kNm with the
K8 (400 x 400)	7.22 kNm	Tul. Longitudinal		using 19 mm diame	
mm		12D16		os/begels with a dian	
		Tul. Transvesal	distance between ea	ch stirrup/begel is fif	teen centimeters (15)
		D10 – 100 (Tump)		centimeters (10) at the	
		Tul. Transvesal	reinforcement using	g 10 mm diameter iro	n with a spacing of

thirty (30) cm.

Mz in Column 7 (Dia 600) mm is 51.14 kNm with the main reinforcement using 19 mm diameter threaded iron, 10 lengths with stirrups/begels with a diameter of 10 mm, the distance between each stirrup/begel is fifteen centimeters (15) in the field and ten centimeters (10) at the support for column reinforcement using 10 mm diameter iron with a spacing of thirty (30) cm.

Mz in Column 8 (400 x 400) mm is 7.22 kNm with the main reinforcement using 16 mm diameter threaded iron, 12 lengths with stirrups/begels with a diameter of 10 mm, the distance between each stirrup/begel is fifteen centimeters (15) in the field and ten centimeters (10) at the support for column reinforcement using 10 mm diameter iron with a spacing of thirty (30) cm.

Mz on Column KL (250 x 400) mm is 11.53 kNm with the main reinforcement using 14 10 mm diameter threaded iron with 10 mm diameter stirrups, the distance between each stirrup is fifteen centimeters (15) in the field and ten centimeters (10) at the support for column reinforcement using 10 mm diameter iron with a spacing of thirty (30) cm. The results of column reinforcement using the RSAP application can be seen in Figure 6 as follows:

Figure 6 Column Reinforcement Image Using RSAP 2024
Application
(Source: RSAP Application, 2024)

Results of the Evaluation of the Effectiveness of Structural Calculations

Based on the results of structural analysis using RSAP, the reinforcement of beams and columns has met the requirements for structural reinforcement, with the same dimensions of beams and columns using the RSAP application is more effective and efficient than the results of the work plan drawings. Meanwhile, after evaluating the floor slab work from the plan drawings, there is a risk of excessive deflection due to the reinforcement spacing being too wide, so the floor slab work is not effective in strengthening the structure, therefore the reinforcement spacing can be closer.

Discussion

Based on the results of the analysis using Robot Structural

Analysis software

ProfessionalThere are differences from the previous plan. However, the analysis performed has the same function: to create a sturdy building structure. The differences from the previous plan can be seen in Table 3 below:

Table 3 Evaluation of RSAP Reinforcement Results with Plan Drawings

Description	RSAP Plan		Analysis Results		
	Results	Drawing			
Beam B1 (400 x	700) mm				
Main	12 D19	11 D25	Based on the		
Reinforcement		4 D10	author's evaluation		
Stirrup Reinforcement	D10 - 100 Support D10 -150 Field	Support D10 - 75 D10 Field - 100	with the same beam dimensions, the planner's reinforcement has met the structural strengthening requirements, however, the reinforcement is not as effective and efficient as reinforcement using the RSAP application which		
			is more effective and efficient.		
Beam B2 (400 x	700) mm				
Main Reinforcement	9 D19	9 D25 4 D10	Based on the author's evaluation		
Stirrup Reinforcement	D10 - 100 Support D10 -150 Field	Support D10 - 75 Field D10 -100	with the same beam dimensions, the planner's reinforcement has met the structural strengthening requirements, however, the reinforcement is not as effective and efficient as reinforcement using the RSAP application which is more effective and efficient.		
Beam B3 (300 x	700) mm				
Main Reinforcement	9 D19	7 D19 4 D10	Based on the author's evaluation		
Kennorcement		4 1/10	author's evaluation		

Stirrup Reinforcement	D10 - 100	Support D10 - 75	with the same beam dimensions,				is more effective and efficient.
	Support	Field	the planner's	Beam B6 (400 x	700) mm		
	D10	D10	reinforcement has	Main	9 D19	9 D25	Based on the
	-150	-100	met the structural	Reinforcement		4 D10	author's evaluation
	Field		strengthening	Stirrup	D10 -	D10 -	with the same
			requirements,	Reinforcement	100	100	beam dimensions,
			however, the		Support	Support	the planner's
			reinforcement is		D10	Field	reinforcement has
			not as effective		-150	D10	met the structural
			and efficient as		Field	-100	strengthening
			reinforcement				requirements,
			using the RSAP				however, the
			application which is more effective				reinforcement is
			and efficient.				not as effective and efficient as
Beam B4 (550 x	950) mm		and efficient.				reinforcement
Main	15 D19	15 D25	Based on the				using the RSAP
Reinforcement	13 D17	4 D10	author's evaluation				application which
Stirrup	D10 -	Support	with the same				is more effective
Reinforcement	100	D10 - 75	beam dimensions,				and efficient.
	Support	Field	the planner's	Beam B7 (200 x	700) mm		
	D10	D10	reinforcement has	Main	6 D16	4 D 25	Based on the
	-150	-100	met the structural	Reinforcement		4 D10	author's evaluation
	Field		strengthening	Stirrup	D10 -	D10 -	with the same
			requirements,	Reinforcement	100	100	beam dimensions,
			however, the		Support	Support	the planner's
			reinforcement is		D10	Field	reinforcement has
			not as effective and efficient as		-150 Fi 11	D10	met the structural
			reinforcement		Field	-100	strengthening requirements,
			using the RSAP				however, the
			application which				reinforcement is
			is more effective				not as effective
			and efficient.				and efficient as
Beam B5 (400 x	800) mm						reinforcement
Main	9 D19	9 D25	Based on the				using the RSAP
Reinforcement		4 D 10	author's evaluation				application which
Stirrup	D10 -	Support	with the same				is more effective
Reinforcement	100	D10 - 75	beam dimensions,				and efficient.
	Support	D10	the planner's	B8 (250 x 500) 1			
	D10	-150	reinforcement has	Main	4 D16	4 D 19	Based on the
	-150 E:-14	Field	met the structural	Reinforcement	D10	2 D10	author's evaluation
	Field		strengthening requirements,	Stirrup Reinforcement	D10 - 100	D10 - 100	with the same beam dimensions,
			however, the	Kennorcement	Support	Support	the planner's
			reinforcement is		D10	D10	reinforcement has
			not as effective		-150	-150	met the structural
			and efficient as		Field	Field	strengthening
			reinforcement				requirements,
			using the RSAP				however, the
			application which				reinforcement is

		T			T	T	
			not as effective		D10	D10	planner's
			and efficient as		Field -	Field -	reinforcement has
			reinforcement		150	150	met the structural
			using the RSAP		Hook	Hook	strengthening
			application which		D10 -	D10 -	requirements,
			is more effective		150	150	however, the
			and efficient.				reinforcement is
Beam B9 (300 x	700) mm						not as effective
Main	6 D16	7 D 25	Based on the				and efficient as
Reinforcement	0 D10	4 D10	author's evaluation				reinforcement
	D10 -	D10 -	with the same				using the RSAP
Stirrup			beam dimensions,				application which
Reinforcement	100	100	·				is more effective
	Support	Support	the planner's				
	D10	Field	reinforcement has	C 1 1/2 /70/	700		and efficient.
	-150	D10	met the structural	Column K2 (700			5 1 1
	Field	-100	strengthening	Main	20 D19	32 D25	Based on the
			requirements,	Reinforcement			author's evaluation
			however, the	Stirrup	D10 -	D10 -	with the same
			reinforcement is	Reinforcement	100	100	column
			not as effective	and Hook	Support	Support	dimensions, the
			and efficient as		D10	D10	planner's
			reinforcement		Field -	Field -	reinforcement has
			using the RSAP		150	150	met the structural
			application which		Hook	Hook	strengthening
			is more effective		D10 -	D10 -	requirements,
			and efficient.		150	150	however, the
Beam B10 (300	x 700) mm						reinforcement is
Main	8 D19	8 D 25	Based on the				not as effective
Reinforcement	0 2 1)	4 D10	author's evaluation				and efficient as
Stirrup	D10 -	D10 -	with the same				reinforcement
Reinforcement	100	100	beam dimensions,				using the RSAP
Remotechient	Support	Support	the planner's				application which
	D10	Field	reinforcement has				is more effective
	-150	D10	met the structural				and efficient.
				Column K3 (700) v 700) mm	<u> </u>	and efficient.
	Field	-100	strengthening	Main K3 (700	20 D19	32 D24	Based on the
			requirements,		20 D19	32 D24	
			however, the	Reinforcement	D10	D10	author's evaluation
			reinforcement is	Stirrup	D10 -	D10 -	with the same
			not as effective	Reinforcement	100	100	column
			and efficient as	and Hook	Support	Support	dimensions, the
			reinforcement		D10	D10	planner's
			using the RSAP		Field -	Field -	reinforcement has
			application which		150	150	met the structural
			is more effective		Hook	Hook	strengthening
			and efficient.		D10 -	D10 -	requirements,
Column K1 (70	0 x 700) m	m			150	150	however, the
Main	20 D19	36 D25	Based on the				reinforcement is
Reinforcement			author's evaluation				not as effective
Stirrup	D10 -	D10 -	with the same				and efficient as
Reinforcement	100	100	column				reinforcement
and Hook	Support	Support	dimensions, the				using the RSAP
and HOOK	Support	Support	difficition of the		I	I	6 :

			1		I		
			application which		Hook	Hook	not as effective
			is more effective		D10 -	D10 -	and efficient as
			and efficient.		150	150	reinforcement
Column K4 (700) x 700) mm	1					using the RSAP
Main	20 D19	28 D25	Based on the				application which
Reinforcement			author's evaluation				is more effective
Stirrup	D10 -	D10 -	with the same				and efficient.
Reinforcement	100	100	column	Column K7 (Dia	a 600) mm		
and Hook	Support	Support	dimensions, the	Main	10 D19	16 D25	Based on the
and Hook	D10	D10	planner's	Reinforcement	10 D17	10 D23	author's evaluation
		Field -	reinforcement has		D10	D10	
	Field -			Stirrup	D10 -	D10 -	
	150	150	met the structural	Reinforcement	100	100	column
	Hook	Hook	strengthening	and Hook	Support	Support	dimensions, the
	D10 -	D10 -	requirements,		D10	D10	planner's
	150	150	however, the		Field -	Field -	reinforcement has
			reinforcement is		150	150	met the structural
			not as effective			Hook	strengthening
			and efficient as			D10 -	requirements,
			reinforcement			150	however, the
			using the RSAP				reinforcement is
			application which				not as effective
			is more effective				and efficient as
			and efficient.				reinforcement
Column K5 (600) x 600) mm	1					using the RSAP
Main	12 D19	16 D25	Based on the				application which
Reinforcement	12 D19	10 D23	author's evaluation				is more effective
	D10 -	D10 -	with the same				and efficient.
Stirrup Reinforcement		100	column	Column K8 (40	0 v 400) m	m	and efficient.
	100		dimensions, the	Main	12 D16	16 D19	Based on the
and Hook	Support	Support	· ·		12 D10	10 D19	author's evaluation
	D10	D10	planner's	Reinforcement	D10	D10	
	Field -	Field -	reinforcement has	Stirrup	D10 -	D10 -	with the same
	150	150	met the structural	Reinforcement	100	100	column
	Hook	Hook	strengthening	and Hook	Support	Support	dimensions, the
	D10 -	D10 -	requirements,		D10	D10	planner's
	150	150	however, the		Field -	Field -	reinforcement has
			reinforcement is		150	150	met the structural
			not as effective				strengthening
			and efficient as				requirements,
			reinforcement				however, the
			using the RSAP				reinforcement is
			application which				not as effective
			is more effective				and efficient as
			and efficient.				reinforcement
Column K6 (60	0 x 600) m	m					using the RSAP
Main	12 D19	20 D25	dimensions, the				application which
Reinforcement			planner's				is more effective
Stirrup	D10 -	D10 -	reinforcement has				and efficient.
Reinforcement	100	100	met the structural	Column Kl (250	x 400) mm	1	
and Hook	Support	Support	strengthening	Main	14 D10	8 D16	Based on the
und Hook	D10	D10	requirements,	Reinforcement	1.510	3210	author's evaluation
	Field -	Field -	however, the	Stirrup	D10 -	D10 -	with the same
			reinforcement is	Reinforcement			column
1	150	150	remnorcement is	Kennorcement	100	100	COIUIIIII

and Hook	Support	Support	dimensions, the
	D10	D10	planner's
	Field -	Field -	reinforcement has
	150	150	met the structural
			strengthening
			requirements,
			however, the
			reinforcement is
			not as effective
			and efficient as
			reinforcement
			using the RSAP
			application which
			is more effective
			and efficient.

(Source: Author's Analysis Results)

Based on Table 3 above, there are analysis results that are very clearly visible in the reinforcement. Reinforcement in beams and columns from the analysis results using the RSAP application is more efficient and effective than reinforcement in the design drawings with the same beam and column dimensions in the design drawings. for reinforcement in the analysis results using the RSAP application is more effective but not efficient because the reinforcement spacing is closer and wasteful, so this study is more efficient and effective in accordance with the research of Egrid Ayu Dyfiantifa et al. which states that the use of the RSAP application is more effective and efficient in calculating beam and column structures.

Conclusion

Based on the results of structural calculations using the Robot Structural Analysis Professional application, the author can draw the following conclusions:

- 1. Analysis of reinforced concrete structure calculations using the Robot Structural Analysis Professional application produces reinforcement of beams B1, B2, B3, B4, B5, B6 and B10 with main reinforcement diameter D19 mm while in beams B7, B8 and B9 the main reinforcement diameter D16 mm. For column work K1, K2, K3, K4, K5, K6 and K7 use main reinforcement with diameter D19 mm, while in column K8 the main reinforcement diameter D16 mm, for KL the diameter D10 mm.
- 2. The results of the evaluation of the effectiveness of structural calculations using the Robot Structural Analysis Professional applicationThe reinforcement of the beams and columns has met the structural strengthening requirements, with the same beam and column dimensions using the RSAP application is more effective and efficient than the

results of the work plan drawings. Meanwhile, after evaluating the effectiveness of the floor slab work, it does not meet the structural requirements due to the risk of excessive deflection due to the reinforcement spacing being too wide.

Reference

Andini Caesar Oktavia, Bay, Nawir Rasidi, Sugiarti. (2022). Perencanaan Struktur Gedung Virtual Office Soekarno Hatta Kota Malang Berbasis Bim. Jurnal Online Skiripsi, Edisi Juni 2022, Vol 3, No. 2.

- Arie Dwie Restiawan, Bayzoni, Hasti Riakara Husni, Mohd Isneni. (2023). Evaluasi Kekuatan Struktur Gedung Bertingkat Terhadap Pengaruh Beban Gempa Menggunakan Analisis Dinamik Respon Spektrum. Jurnal JRSDD, Edisi September 2023, Vol. 11, No. 3.
- Apran Heri Yulianto.(2021). Perencanaan Struktur Rumah Sakit Ibu dan Anak Lima Belas Lantai Di Colomadu Provinsi Jawa Tengah. Jurnal Teknik Sipil Universitas Tunas Pembangunan Surakarta.
- Badan Standardisasi Nasional.(2019). Persyaratan Beton
 Struktural untuk Bangunan Gedung dan
 Penjelasan (SNI 2847:2019). Jakarta.
- Badan Standardisasi Nasional. (2019). *Tata Cara*Perencanaan Ketahanan Gempa untuk Struktur

 Bangunan Gedung dan Nongedung (SNI 1726-2019).

 Jakarta.
- Badan Standardisasi Nasional. (2020). Spesifikasi *untuk Bangunan Gedung Baja Struktural (SNI 1729:2020)*.

 Jakarta
- Dina Nurianah,Ir Sumarman.,MT.(2019).*Analisis Struktut Gedung Rawat Inap Bedah RSUD Gunung Jati Kota Cirebon Tahap I.* Jurnal Konstruksi, Vol. VIII, No. 3.
- Egrid Ayu Dyfiantifa , Nurjanah, Widha Ardhiansyah.(2025)
 "Perbandingan Analisa Struktur Beton Menggunakan
 Aplikasi Robot Structural Analysis Professional".

 Jurnal Qua Teknika Vo. 15 No.1

- Fathurozak, Antonius, Sumirin.(2024). Evaluasi Kinerja Desain Struktur Gedung ICU, PICU dan NICU RSUD Suradadi Kabupaten Tegal. Rang Teknik Journal Vol. 7 No. 2
- Rian Rivaldo Markus, Ir. Bantot Sutriono M.Sc.(2023). Alternatif Desain Struktur Gedung Rumah Sakit Royal 7 Lantai Surabaya Menggunakan Struktur Baja Dengan Analisis Autodesk Robot.

 Jurnal Perencanaan dan Rekayasa Sipil Vol. 06.
- Robinson Sijabat, Rahelina Ginting, Ricky Yohanes Marbun. (2021). Evaluasi Struktur Atas pada Gedung Rumah Sakit Mitra Medika Medan —Sumatera Utara. Jurnal Ilmiah Teknik Sipil Vol. 10 No. 1.
- Sudarno P Tampubolon, S.T.,M.Sc.(2022). *Struktur Beton 1 Civil Engginering*. Jakarta. UKI Press.
- Shyva Farhani, Dila Rivana, Yongki Alexander Tanne.(2024). Evaluasi Perubahan Desain Gedung Pada Tahap Konstruksi Terhadap Kapasitas Struktural. Civil Engineering Research Journal.
- Siva Naveen, Nimmy Mariam Abraham, Anitha Kumasari S D. (2019). Analysis of Irreguler Structure under Earthquake loads. Jurnal Structural Integrity 14 806-819.
- Tamaulina Br.Sembiring et al.(2023).Buku Ajar Metodologi Penelitian (Teori dan Pratik).Kabupaten Karawan. CV.Saba Jaya Publisher.