p-ISSN: 1978-8789, e-ISSN: 2714-7649 http://distilat.polinema.ac.id

EVALUASI EFISIENSI *HEAT EXCHANGER* (HE - 4000) DENGAN METODE KERN

Muhammad Rais Zain, Asalil Mustain
Jurusan Teknik Kimia, Politeknik Negeri Malang, Jl. Soekarno Hatta No. 9, Malang 65141,
Indonesia
raisandroid@gmail.com, asalil89@polinema.ac.id

ABSTRAK

Proses perpindahan panas merupakan salah satu bentuk transfer energi yang mempunyai peranan penting dalam suatu proses produksi atau operasi seperti halnya industri perminyakan. Salah satu tipe alat penukar panas yang sering dipakai adalah *shell and tube heat exchanger*. Pada Central Processing Area (CPA) di PT Pertamina Tuban, *heat exchanger* (HE - 4000) digunakan untuk memanaskan atau meningkatkan suhu minyak yang akan menuju ke FSO (*Floating Storage Offloading*). Hal ini dilakukan karena minyak yang terproduksi berjenis *Parafinix* (*Wax*) yang dapat membeku pada suhu 80°F. Akan tetapi, kinerja heat exchanger di CPA saat ini mengalami penurunan yang disebabkan oleh terbentuknya kerak. Hal tersebut menyebabkan koefisien perpindahan panas (Ud) menurun dan mencapai jenuh. Berdasarkan hasil evaluasi dari perhitungan menggunakan metode Kern, nilai *fouling factor* (Rd) secara aktual didapat sebesar 0,069018 $\frac{hr.ft^2.F}{BTU}$ yang dimana melebihi nilai Rd yang ditetapkan yaitu sebesar 0,002 $\frac{hr.ft^2.F}{BTU}$. Oleh karena itu, pembersihan perlu dilakukan secara berkala untuk menjaga kinerja *heat exchanger* agar tetap beroperasi dengan baik.

Kata kunci: Heat Exchanger, Perpindahan Panas, Fouling Factor

ABSTRACT

The process of heat transfer is one form of energy transfer that has an important role in a production or operation process as well as the petroleum industry. One type of heat exchanger that is often used is a shell and tube heat exchanger. In the Central Processing Area (CPA) at PT Pertamina Tuban, a heat exchanger is used to heat or increase the temperature of oil going to the FSO (Floating Storage Offloading). This is done because the oil produced is of Parafinix (Wax) which can freeze at 80 ° F. However, the current performance of the heat exchanger in CPA has decreased due to the formation of scale. This causes the coefficient of heat transfer (Ud) to decrease and reach saturation. Based on the evaluation results from calculations using the D.Q.Kern method, the actual fouling factor (Rd) value is 0,069018 $\frac{hr.ft^2.F}{BTU}$ obtained which exceeds the specified Rd value of 0,002 $\frac{hr.ft^2.F}{BTU}$. Therefore, cleaning needs to be done periodically to maintain the performance of the heat exchanger to keep it operating properly .

Keywords: Heat Exchanger, Heat Transfer, Fouling Factor

1. PENDAHULUAN

PT Pertamina Tuban terdiri dari tiga unit proses, yaitu unit *separating*, unit *sweetening*, dan unit *shipping*. Sebelum minyak didistribusikan ke FSO (*Floating Storage Offloading*) pada unit *shipping*, minyak terlebih dahulu dinaikkan suhunya menggunakan alat

Corresponding author: Jurusan Teknik Kimia Politeknik Negeri Malang Jl. Soekarno-Hatta No.9, Malang, Indonesia

E-mail: asalil89@polinema.ac.id

Diterima: 13 Agustus 2020 Disetujui: 25 Agustus 2020 © 2020 Politeknik Negeri Malang heat exchanger (HE - 4000) agar seminimal mungkin tidak tercipta kerak di dalam pipa selama proses pendistribuian berlangsung. Heat exchanger adalah suatu alat yang dimana terjadi aliran perpindahan panas diantara dua fluida atau lebih pada temperatur yang berbeda [1], dimana fluida tersebut keduanya mengalir didalam sistem. Fluida dengan temperatur yang lebih tinggi akan mengalirkan panas ke fluida yang bertemperatur lebih rendah. Heat exchanger pada unit Central Processing Area (CPA) ini bertipe shell and tube yang terdiri dari sejumlah tube yang terpasang didalam shell yang berbentuk silindris. Terdapat dua fluida yang mengalir, dimana satu fluida mengalir di dalam tube, dan yang lainnya mengalir diluar tube [2]. Heat exchanger (HE - 4000) memanfaatkan aliran panas berupa air formasi yang berasal dari produk bawah alat separator pada unit separating. Sehingga, penelitian pada Heat Exchanger (HE - 4000) dilakukan untuk mengevaluasi nilai perpindahan panas dan efisiensi performa alat dengan melakukan perhitungan menggunakan metode Kern. Evaluasi dilakukan terhadap nilai koefisien perpindahan panas clean overall (Uc), koefisien perpindahan panas dirty overall (Ud), fouling factor (Rd) dan efisiensi. Solusi dari permasalahan tersebut diharapkan dapat meningkatkan efisiensi perpindahan kalor pada heat exchanger karena terjadinya pengurangan pada energi yang dibutuhkan atau penurunan terhadap ukuran heat exchanger [3].

2. METODOLOGI PENELITIAN

Adapun tahapan penelitian adalah sebagai berikut:

2.1. Pengumpulan Data

Pengumpulan data meliputi spesifikasi alat dan desain operasi awal pada *Heat Exchanger* yang diperoleh dari PT Pertamina Tuban. Pengambilan sampel dilakukan di unit *Central Process Area* (CPA) dan *Process Engineer* (PE). Pengambilan sampel meliputi *flowrate* minyak dan air formasi, *temperature in* dan *temperature out shell* dan *tube*.

2.2. Perhitungan

Untuk menghitung *performance* pada alat *Heat Exchanger*, beberapa tahapan penyelesaian menggunakan metode Kern [4] dapat dilakukan sebagai berikut:

1. Menentukan material dan heat balance

Pemilihan material untuk mendesain *heat exchanger* disesuaikan dengan bahan yang akan melewatinya. Perhitungan *heat balance* dimaksudkan untuk mengetahui suhu keluaran dan *flowrate* air pendingin. Perhitungan dapat dilakukan dengan persamaan neraca panas sebagai berikut :

```
Qs = Qw
Ws \times Cp_1 \times (t_2 - t_1) = Ww \times Cp_2 \times (T_1 - T_2)
Qw = \frac{Ww}{\rho w}

Keterangan:

Ws = flowrate \ crude \ oil \ (lb/hr)
Ww = flowrate \ air \ (lb/hr)
Cp_1 = specific \ heat \ crude \ oil \ (Btu/lb.°F)
Cp_2 = specific \ heat \ air \ (Btu/lb.°F)
T_1 = \text{suhu \ air \ masuk \ (°F)}
T_2 = \text{suhu \ air \ keluar \ (°F)}
t1 = \text{suhu \ } crude \ oil \ keluar \ (°F)
t1 = \text{suhu \ } crude \ oil \ keluar \ (°F)
```

2. Menghitung $\Delta T \ LMTD$ (Logarithmic Mean Temperature Difference)

$$\Delta T \ LMTD = \frac{\Delta t_1 - \Delta t_2}{\ln \frac{\Delta t_1}{\Delta t_2}}$$

$$R = \frac{T_1 - T_2}{t_2 - t_1} S = \frac{t_2 - t_1}{T_1 - t_1}$$

Nilai Ft didapat dari Figure 19 (Kern, 1950)

 $\Delta T = \Delta T \ LMTD \ x \ Ft$

Menghitung Caloric Temperature pada Shell dan Tube (Tc dan tc)

Perhitungan dilakukan menggunakan figure 17 (Kern, 1950) sehingga diperoleh nilai kc.

Selanjutnya, melakukan perhitungan nilai $\frac{\Delta Tc}{\Delta Th}$ sehingga diperoleh nilai Fc untuk menghitung caloric temperature dengan persamaan sebagai berikut :

$$\frac{\Delta Tc}{\Delta Th} = \frac{T_1 - t_2}{T_2 - t_1}$$

$$Tc = T_2 + Fc(T_1 - T_2)$$

$$tc = t_1 + Fc(t_2 - t_1)$$

4. Menghitung bilangan Reynold (Re)

Perhitungan *flow area* dilakukan terlebih dahulu pada sisi *tube* dan *shell* dengan persamaan sebagai berikut :

Flow Area Shell (as)

$$as = \frac{IDs \ x \ C' \ x \ B}{144 \ x \ Pt}$$

Flow Area Tube (at)

$$at = \frac{Nt \times a/t}{144 \times n}$$

Keterangan:

at = flow area

IDs = inside diameter shell

C" = tube clearance

Pt = pitch

a't = tabel 10 (Kern, 1950)

Nt = jumlah tube

N = jumlah pass pada tube

Selanjutnya, menghitung *mass velocity* (G) pada *tube* dan *shell* dengan persamaan sebagai berikut :

$$G = \frac{W \ s/t}{a \ s/t}$$

Keterangan:

G = mass velocity

W s/t = flow rate shell/tube

a s/t = flow area shell/tube

Setelah diperoleh nilai G dan $a \ s/t$, maka bilangan Reynold pada tube dan shell dapat dihitung dengan persamaan sebagai berikut :

$$Nre = \frac{D \times G}{\mu}$$

Keterangan:

D = diameter ekivalen pada shell dan inside diameter pada tube

 μ = viskositas fluida pada temperature caloric

5. Menghitung nilai ho, hi, dan hio

Untuk menghitung nilai ho, hi, dan hio perlu mencari jH dan k untuk mencari nilai bilangan tak berdimensi $k(\frac{Cp \times \mu}{k})^{\frac{1}{s}}$ pada *tube* dan *shell*.

Nilai jH diperoleh dari grafik *figure 28* untuk *shell* dan grafik *figure 24* untuk *tube* (Kern, 1950). Nilai k diperoleh dari grafik *figure 16* (Kern, 1950) untuk fluida hidrokarbon. Perhitungan ho untuk *shell* dengan persamaan sebagai berikut :

$$ho = jHs \, x \, \frac{k}{De} \, x \, k \left(\frac{Cp \, x \, \mu}{k}\right)^{\frac{1}{3}} x \, \varphi s$$

Perhitungan hio untuk tube dengan persamaan sebagai berikut :

$$hi = jHt \ x \ \frac{k}{ID} \ x \ k \left(\frac{Cp \ x \ \mu}{k}\right)^{\frac{1}{3}} x \ \varphi s$$
$$hio = hi \ x \ \frac{ID}{OD}$$

Keterangan:

h = heat transfer coefficient

jH = factor untuk *heat transfer*

 $\varphi s/\varphi t$ = factor koreksi pada shell/tube

6. Menghitung Fouling Factor (Rd)

Rd merupakan factor kekotoran pada sisi dalam/luar *tube* yang diperoleh dengan menghitung *overall heat transfer coefficient* saat kondisi bersih dan desain dengan persamaan sebagai berikut :

$$Ud = \frac{Q}{\frac{A \times \Delta T}{Uc - Ud}}$$
$$Rd = \frac{Uc - Ud}{Uc \times Ud}$$

Nilai A diperoleh dengan persamaan sebagai berikut :

$$A = a'' x L x Nt$$

Keterangan:

a" = tabel 10 (Kern, 1950)

L = panjang tube

Nt= jumlah tube

7. Menghitung *Pressure Drop* (ΔP)

Pressure drop merupakan penurunan tekanan yang terjadi pada suatu aliran karena gesekan dinding/saluran. Sebelum menghitung pressure drop, terlebih dahulu menghitung nilai f. Nilai f diperoleh pada grafik figure 19 (Kern, 1950) untuk shell dan grafik figure 26 (Kern, 1950) untuk tube.

Pressure Drop pada Shell

Sebelum menghitung nilai ΔPs , kita menghitung nilai cross (N+1) dengan persamaan sebagai berikut :

$$N + 1 = \frac{12 x L}{B}$$

$$\Delta Ps = \frac{f x Gs^{2} x IDs x (N + 1)}{5,22 x 10^{10} x De x Sg x \varphi s}$$

Pressure Drop pada Tube

Perhitungan pressure drop pada tube dihitung dengan persamaan sebagai berikut :

$$\Delta Pt = \frac{f \times Gt^2 \times L \times n}{5,22 \times 10^{10} \times IDt \times Sg \times \varphi t}$$

$$Uc = \frac{hio \ x \ ho}{hio + ho}$$

3. HASIL DAN PEMBAHASAN

Data spesifikasi alat dan *design* operasi *Heat Exchanger* (HE – 4000) yang digunakan pada PT Pertamina Tuban dapat dilihat pada Tabel 1 dan Tabel 2 berikut:

Tabel 1. Data spesifikasi alat *Heat Exchanger* (HE – 4000)

HE - 4000	Shell		T	- Satuan	
	Notasi	Dimensi	Notasi	Dimensi	
Fluida	Crude Oil		Water Formation		
	Ws	210200	Wt	367850	lb/hr
Suhu Masuk	$t_{\mathtt{1}}$	130	T_1	205	°F
Suhu Keluar	t_2	155	T_2	197	°F
Beda Suhu	Δt	25	ΔΤ	8	°F

Tabel 2. Data design operasi Heat Exchanger (HE – 4000)

HE - 4000	Shell			Tube			
	Notasi	Satuan	Dimensi	Notasi	Satuan	Dimensi	
Dimensi Luar	Ods	inch	611861	Odt	inch	1,5	
Dimensi Dalam	Ids	inch	60,79	ldt	inch	1,23	
Jumlah <i>Baffle</i>	N	unit	16				
Jumlah <i>Pass</i>	N	unit	2	N	unit	8	
BWG			1	10			
Jarak Antar <i>Tube</i>				C'	inch	0,375	
Panjang <i>Tube</i>				L	ft ²	20	
Jumlah <i>Tube</i>				Nt	unit	756	
Pitch				Pt	inch	1,875	
Jarak Antar <i>Baffle</i>				В	inch	12,75	
Surface per lin ft, ft ²				a'	ft2	0,3925	
Flow Area				a't	inch ²	1,19	
Susunan <i>Tube</i>	Triangula	r Pitch					

210

205

8

°F

°F

°F

HE - 4000		Shell		Tube	
	Notasi	Dimensi	Notasi	Dimensi	Satuan
Fluida	Cr	Crude Oil Water Formati		Formation	
	Ws	210200	Wt	367850	lb/hr

124

152

32

 t_1

 t_2

Δt

Tabel 3. Data operasi aktual Heat Exchanger (HE – 4000)

 T_1

 T_2

ΔΤ

3.1. Coefficient Clean Overall

Suhu Masuk

Suhu Keluar

Beda Suhu

Coefficient Clean Overall (Uc) adalah hantaran perpindahan panas dalam keadaan bersih, sedangkan Coefficient Dirt Overall (Ud) adalah hantaran perpindahan panas dalam keadaan kotor. Secara teoritis, nilai Uc harus lebih besar daripada nilai Ud. Hal ini dikarenakan perpindahan panas saat Heat Exchanger dalam keadaan bersih lebih baik daripada dalam keadaan kotor karena masih sedikitnya hambatan yang mengganggu saat proses perpindahan panas terjadi. Hasil perhitungan nilai untuk Uc aktual sebesar $39,80386 \frac{Btu}{hr.ft^2 \cdot F}$ sedangkan Uc desain sebesar $205,3689 \frac{Btu}{hr.ft^2 \cdot F}$.

3.2. Coefficient Dirt Overall

Nilai rata-rata Coefficient Dirt Overall (Ud) aktual sebesar $10,62239 \frac{Btu}{hr.ft^2.^{\circ}F}$ dan Ud desain sebesar $8,079525 \frac{Btu}{hr.ft^2.^{\circ}F}$.. Hal tersebut menunjukkan bahwa perhitungan sesuai dengan nilai teori yaitu nilai Uc lebih besar daripada nilai Ud. Karena nilai perpindahan panas dalam keadaan kotor harus lebih kecil daripada perpindahan panas dalam keadaan bersih.

3.3. Fouling Factor

Fouling Factor (Rd) menunjukkan besarnya faktor pengotor, dikarenakan adanya endapan sehingga memberikan tahanan tambahan terhadap aliran panas. Harga Rd actual $(0,069018 \frac{hr.ft^2.F}{BTU})$ diatas Rd teoritis yaitu $\pm 0,002 \frac{hr.ft^2.F}{BTU}$ (appendix fouling factor kern) menunjukkan terjadinya fouling rate yang relative lebih besar. Semakin lama heat exchanger digunakan akan menyebabkan pengotoran (fouling) pada bagian dalam heat exchanger tersebut. Lapisan pengotoran ini menyebabkan penambahan tahanan termal dan menyebabkan laju perpindahan panas pada heat exchanger berkurang [5], yang pada akhirnya akan berpengaruh pada kinerja dari heat exchanger. Pada penelitian muchammad [6], hasil perhitungan didapat nilai fouling factor Rd = 0,02027 ft² hroF/BTU jauh lebih besar dari nilai toleransi yang diijinkan (fouling resistance) pada specification sheet yaitu 0,0024 ft² hro F/BTU, dari hal ini maka dapat disimpulkan bahwa kotoran dan deposit yang menempel pada tube merupakan penyebab utama menurunnya performa heat exchanger.

3.4. Efisiensi

Heat exchanger (HE – 4000) pada PT. Pertamina EP Asset 4 Sukowati Field ini digunakan untuk memindahkan panas dari panas air formasi ke panas minyak sebelum didistribusikan ke FSO. Dari hasil perhitungan, nilai koefisien perpindahan panas overall

secara aktual didapat sebesar $10,62339 \frac{Btu}{hr.ft^2.^{\circ}F}$ dan nilai koefisien perpindahan panas overall desain didapat sebesar $8,07925 \frac{Btu}{hr.ft^2.^{\circ}F}$. Sehingga didapatkan nilai efisiensi perpindahan panas alat *Heat Exchanger* (HE - 4000) sebesar 76,0613% dengan cara membandingkan nilai perpindahan panas secara aktual dan perpindahan panas desain. Menurunnya performa *heat exchanger* juga disebabkan banyak hal. Pada penelitian Mufid kenaikan *flowrate* air panas mengakibatkan menurunnya *Number of Transfer Unit* (NTU). Hal ini terjadi disebabkan oleh semakin besarnya kapasitas kalor minimum yang diakibatkan oleh kenaikan flowrate air panas [7].

4. KESIMPULAN

Dari penelitian ini dapat disimpulkan bahwa nilai efisiensi perpindahan panas pada alat $Heat\ Excahnger\ (HE-4000)$ adalah sebesar 76,0613%. $Coefficient\ clean\ overall\ (Uc)$ aktual memiliki nilai lebih kecil dari Uc desain dengan nilai Uc aktual sebesar $39,80386\frac{Btu}{hr.ft^2.^c}$ dan Uc desain sebesar $205,3689\frac{Btu}{hr.ft^2.^c}$. Nilai $coefficient\ dirt\ overall\ (Ud)$ aktual lebih besar dari nilai desain yaitu nilai Ud aktual sebesar $10,62239\frac{Btu}{hr.ft^2.^c}$ dan Ud desain sebesar $8,079525\frac{Btu}{hr.ft^2.^c}$. Nilai Rd aktual sebesar $0,069018\frac{Btu}{hr.ft^2.^c}$ diatas batas nilai Rd pada literatur yaitu sebesar $\pm 0,002\frac{hr.ft^2.^c}{BTU}$. Hal tersebut menunjukkan bahwa $heat\ exchanger\ perlu\ dilakukan\ pembersihan\ (cleaning)\ karena\ telah\ terjadi\ pengotoran.$

REFERENSI

- [1] World Steel Ascociation, 2012, *The White Book of Steel*, diambil dari: www.worldsteel.org/steelstory.
- [2] Muchammad, M., 2017, Analisis Penurunan Performa Heat Exchanger Stabilizer Reboiler 011E120 Di PT. Pertamina Refinery Unit IV Cilacap, Momentum, Vol. 13, No. 2, 72-77.
- [3] Thirumarimurugan, M., Kannadasan, T., Ramasany, E., 2008, *Simulation Studies on a Cross Flow Plate Turbulator Heat Exchanger*, American Journal of Applied Sciences, Vol. 5, No. 10, 1318-1321.
- [4] Kern, D.Q., 1983, *Process Heat Transfer*, McGraw Hill International Book Company, Japan.
- [5] Cengel, Y.A., 2006, *Heat Transfer*: A *Practical Approach* (2nd Ed), McGraw- Hill Higher Education, Ohio.
- [6] Holman, J.P., 2010, Heat Transfer, Tenth Edition, McGraw-Hill, New York.
- [7] Mufid, M., Hakim, A.R., dan Widiono, B., 2019, *Pengaruh Pitch Turbulator Terhadap NTU Double Pipe Heat Exchanger*, Jurnal Teknik Kimia dan Lingkungan, Vol 3, No. 1, 27-33.