
Journal of Telecommunication Network (Jurnal Jaringan Telekomunikasi) Vol. 14, No.2 (2024)

E-ISSN: 2654-6531 P- ISSN: 2407-0807 226

Design and Implementation of a Parking Lot

Monitoring System Using the YOLOv5 Method

(Case Study in the AH Polinema Building

Parking Lot)

Ananda Alif Kemal Firmansyah1, Rieke Adriati Wijayanti2*, Hudiono3

1,2,3Digital Telecommunication Network Study Program, Department of Electrical Engineering, State Polytechnic of Malang,

65141, Indonesia.

1anandakemal3@gmail.com, 2riekeaw@polinema.ac.id, 3hudiono@polinema.ac.id

Abstract— High vehicle productivity and not accompanied by adequate road construction can result in traffic jams on the

highway. Apart from causing traffic jams on the roads, the large number of private vehicles, especially four-wheeled

vehicles, results in full parking spaces in public service areas. The size of parking spaces in public places cannot keep up

with developments in the number of private cars, so that many car parking spaces are full and it is difficult to know which

parking positions can still be occupied. The Empty Parking Lot Monitoring System in the AH Polinema Building was

carried out based on the level of difficulty in finding empty slots for parking four-wheeled vehicles or cars, so this system

was formed as a solution by becoming an information system for the general public to make it easier to find empty slots

for parking without visiting the parking lot. This system utilizes two web cameras facing the parking lot of the AH

Polinema Building. The captured images from the two web cameras will be processed via a single-board computer (SBC),

namely the Raspberry Pi 4B. Image processing was carried out using the YOLOv5 method. This processing results in the

calculated value of the total empty slots for the AH Polinema Building parking lot. This output is integrated into the

website so that the public can easily access information on vacant parking lots in the AH Polinema Building.

Keywords— Car, Machine Learning, Parking, Parking Lot, YOLOv5.

I. INTRODUCTION

A. Background of the problem

Private vehicles are the most popular choice among people

because of their comfort, effectiveness, and efficiency in

moving places, while online transportation is the second most

popular choice among people and public transportation is the

last choice [1]. According to Dadang's research, high vehicle

productivity and not accompanied by adequate road

construction can result in traffic jams on the highway [2]. Apart

from causing traffic jams on the roads, the large number of

private vehicles, especially four-wheeled vehicles, results in

full parking spaces in public service areas. The size of parking

spaces in public places cannot keep up with developments in

the number of private cars, so that many car parking spaces are

full and it is difficult to know which parking positions can still

be occupied [3].

In this research, one of the case studies of the parking lot at

the AH Polinema Building is raised. In the car park at the AH

Polinema Building, visitors cannot know which parking

position can be occupied without entering the parking area.

According to the parking officer at the AH Polinema Building,

there are problems in managing the parking area. One example

is when a visitor's vehicle exceeds the parking capacity, the

officer will direct the car to look for a parking space that is

located away from the AH Building. There are two parking lots

at the AH Polinema Building, the first is in front of the

Polinema Mini Soccer Field, behind the cycling bicycle

parking area. The second is behind the AH Electrical

Engineering Building, in front of the Lecturer Motorcycle

Parking Lot. The AH Polinema Building Parking Lot can be

provided with convenience with the Parking Capacity

Information System, so that visitors and parking attendants

have the facility to monitor empty parking lots [4]. Visitors

who enter the parking lot do not need to go around looking for

an empty lot

for parking because the system will provide information on

empty parking spaces in the AH Polinema Building Parking.

Based on the problems, a tool is needed to carry out image

processing to detect and calculate the number of parking spaces.

With this tool, it is hoped that it will make it easier for visitors

to find out the parking position without entering the parking lot

first. In previous research, the image processing process in

parking lots was carried out using computing power from the

GPU. However, this research had shortcomings in conducting

training and testing datasets which resulted in reduced accuracy

values [3]. Then this research was applied to a prototype, so

that in this research parking lot detection was implemented in

the AH Polinema Building as a development of previous

research.

In this research, a detection process was carried out and

counted the number of empty parking spaces. Visitors and

mailto:1saepulrahmat@pnc.ac.id
mailto:2hendipurnata@pnc.ac.id
mailto:3author3@polinema.ac.id

Journal of Telecommunication Network (Jurnal Jaringan Telekomunikasi) Vol. 14, No.2 (2024)

E-ISSN: 2654-6531 P- ISSN: 2407-0807 227

parking attendants can monitor the parking lot at the AH

Polinema Building via a website that will be integrated with the

tool. Therefore, a method is needed to carry out the process.

The method used to solve the problem is using the YOLOv5

method. The main reason for choosing this method is because

the YOLOv5 method has varying models (weights), so that

various tests can be carried out to get the most optimal

performance. Another reason for choosing the YOLOv5

method is based on the speed in processing an image in real-

time with an average speed of 30 fps (frames per second) [5].

This research refers to the following objectives:

1. Design and Implement a Parking Lot Monitoring System

Using the YOLOv5 Method by utilizing a website as a user

interface.

2. To integrate the detection results and calculation of the

number of available parking spaces with the website.

3. To monitor the number of empty parking spaces based on

the website.

II. METHOD

The type of research that will be carried out is

Manufacturing/Development research. This research develops

previous research. To create a parking space availability

system requires designing tools and systems so that maximum

results are obtained. This research consists of three main

systems, namely input, process, and finally output. The input

and process systems interact with each other via a USB type A

cable. Meanwhile, the process and output systems interact with

each other via the internet. The following is a block diagram of

the system:

Figure 1. Block Diagram Of System

In Figure 1 it can be seen that there are two camera inputs,

with the camera details being a web camera in the parking lot

to detect cars so that empty parking slots can be calculated in

the AH Polinema Building [6]. The two cameras are connected

to a Single Board Computer (SBC) via a USB type A cable.

The images taken by the two cameras are processed by the SBC

in the form of a Raspberry Pi 4B. The results of image

processing are forwarded to software output in the form of a

website.

The website is the output of this research system. The site

contains the condition of the parking lots that have been

detected by the camera, then also displays the number of

parking spaces available at the AH Polinema Building Parking.

The results of detecting the availability of empty parking

spaces on two cameras are displayed on one website page. The

internet plays an important role in research as a communication

medium between systems, so that the system can run well.

To make it easier for system users to understand the overall

system workflow and gain a better understanding of how

system components interact and influence each other, a system

flowchart was created [7]. The following is an image of the

system flowchart:

Figure 2. System Flowchart

In Figure 2 which explains the flow of the research system,

there is a camera located in the parking lot at the AH Polinema

Building to detect and count the number of empty parking slots

for cars. The captured images will be processed by a Single

Board Computer (SBC) using the YOLOv5 method. The

YOLOv5 method is tasked with detecting and counting the

number of cars in the AH Polinema Building Parking Lot [8].

Then the system will provide a choice whether there are empty

parking slots or not. If there are empty slots then the Website

will display "Parking Available: <total>", but if there are no

empty slots then the Website will display "Parking Available:

0".

Then in Figure 3 there is a system workflow diagram of the

empty parking lot monitoring system at the AH Polinema

Building Parking.

Kamera (A)

Kamera (B)

INPUT PROSES

Single Board
Computer (SBC) Software

Internet

OUTPUT

Start

Camera ON

Method of detecting

and calculating

empty parking

spaces

Get the total

value of empty

parking lots

Is there an

empty slot?

The web displays

 Parking

Available: 0

The web displays

 Parking

Available: <total>

End

Yes

No

Journal of Telecommunication Network (Jurnal Jaringan Telekomunikasi) Vol. 14, No.2 (2024)

E-ISSN: 2654-6531 P- ISSN: 2407-0807 228

Figure 3. System Workflow Diagram [9]

The following is a description of the diagram:

1. The Single Board Computer (SBC) in the form of a

Raspberry Pi 4B is on.

2. Open GNOME Terminator (a Linux terminal emulator

programmed in Python). Used to run programs on the

Raspberry Pi 4B.

3. Draw an area for car detection, done by typing "py parking-

get-coordinates.py" then clicking "Enter". Then a window

will appear showing the results captured by two cameras.

Double right click on the window to draw a point that is

connected to another point. Then left click once to save the

coordinate points that have been drawn. Then click “q” to

finish and close the window [10].

4. Detect using YOLOv5 and send an HTTP link, used after

finishing drawing the coordinate points. Type “py parking-

main.py” to start detecting cars and counting the number of

empty parking spaces. The results of car detection and

calculation of the number of parking spaces will be sent by

SBC via a local HTTP link.

5. Run the website as output, by typing "streamlit run parking-

app.py" and clicking "Enter" then SBC will integrate the

parking-app.py program with the Streamlit website display.

A localhost URL link such as localhost:8501 or an IP URL

link such as 192.168.3.162:8501 will appear and display the

results of integrating the Python language with the Streamlit

website.

6. On the website display, images captured by two cameras

will appear. There is a bounding box for cars in the AH

Polinema Building Parking. The results of calculating the

number of empty slots will appear in the form of text on the

image captured by the camera.

III. RESULTS AND DISCUSSION

To obtain the results, a test was carried out on the parking

space availability detection system at the AH Polinema

Building Parking which was carried out by directly monitoring

the parking lots. Three types of tests were carried out, namely:

1. Detection accuracy testing, which is carried out repeatedly

to obtain a good average accuracy value.

2. Raspberry Pi 4B performance testing was carried out to

obtain frame rate (fps) values and CPU usage percentage

values.

3. Testing the calculation of the total availability of parking

spaces, was carried out to test the system for calculating

parking spaces in the AH Polinema Building Parking.

Figure 4. Parking lot slot numbering for Web Camera A

In Figure 4 is an illustrative image for the numbering of

parking lot slots used for testing on Web Camera A [11]. And

in Figure 5 is an illustrative image for numbering parking lot

slots used for testing on Web Camera B.

Figure 5. Parking lot slot numbering for Web Camera B

Start

Open GNOME

terminator

Single Board

Computer ON

A

Drawing an area for

car detection

Type py parking-

get-coordinates.py

Detect using YOLOv5 and

send HTTP link

Type py

parking-main.py

Type streamlit run

parking-app.py

Runs the website as output

Detection results (HTTP)

appear on the website

End

A

Journal of Telecommunication Network (Jurnal Jaringan Telekomunikasi) Vol. 14, No.2 (2024)

E-ISSN: 2654-6531 P- ISSN: 2407-0807 229

The numbering of parking slots in the AH Polinema

Building Parking was carried out to test the accuracy of car

detection in the AH Polinema Building parking lot, test the

performance of the Raspberry Pi 4B in detecting cars using the

YOLOv5 method, and frame rate testing on car detection

results in the AH Polinema Building Parking.

A. Detection Accuracy Testing

In this test, car detection accuracy was tested using the

YOLOv5 method. This test does not discuss aspects other than

accuracy values. This test was carried out in three conditions,

namely: morning, afternoon, and evening. These conditions

have different intensities of sunlight. With these conditions, it

is hoped that there will be no interference with the accuracy of

detection [12]. Below is a test of the average accuracy value

with three types of conditions using the YOLOv5 method in

the AH Polinema Building Parking.

From the Table I, the average value of car detection

confidence is obtained in the following conditions: morning.

The test was carried out in the morning at 07.30 – 08.00. There

are eight cars that fill the parking slots with a total of ten

available parking slots. Various accuracy values were obtained

in this test. The formula for calculating the average confidence

value is as follows [13]:
(𝑇ℎ𝑒 𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡𝑒𝑠𝑡𝑠)

(𝑡𝑜𝑡𝑎𝑙 𝑡𝑒𝑠𝑡𝑖𝑛𝑔)
 (1)

Based on the calculations, the average confidence value for

detecting parking space availability in the morning is 65.128%,

rounded up to 65.13%. After testing the data in the morning,

continue testing the data in the daytime.

From the Table II, the average value of car detection

confidence is obtained under conditions: daytime. The tests

were carried out during the day at 11.30 – 12.00. There are nine

cars that fill the parking slots with a total of twelve affordable

parking slots. Various accuracy values were obtained in this

test.

Based on the calculations number 1, the average confidence

value for detecting parking lot availability during the day is

85.128%, rounded up to 85.13%. After testing the data during

the day, continue testing the data in the afternoon.

From the Table III, the average value of car detection

confidence is obtained in the conditions: afternoon. The tests

were carried out during the day at 15.00 – 15.30. There are

three cars that fill the parking slots with a total of twelve

affordable parking slots. Various accuracy values were

obtained in this test.

Based on the calculations number 1, the average confidence

value for detecting parking lot availability in the afternoon is

87.722%, rounded up to 87.7%. From the detection accuracy

test, it can be concluded that the YOLOv5 method has

sufficient capabilities to overcome the problems in this

research.

B. Raspberry Pi 4B Performance Testing

In this sub-chapter, tests are carried out to measure the frame

rate and the amount of CPU usage on the computer when

detecting cars using YOLOv5. Testing was carried out using

two different CPUs, namely BCM2711B0 (Linux) and Ryzen

3 5300U with Radeon Graphics (Windows) [11]. Testing on

the Ryzen 3 5300U with Radeon Graphics aims to benchmark

the performance of the BCM2711B0. Table IV is test to

measure the frame rate (fps) when using one Web Camera and

two Web Cameras.
TABLE I

ACCURACY TESTING IN THE MORNING

TABLE II

ACCURACY TESTING IN THE DAYTIME

TABLE III

ACCURACY TESTING IN THE EVENING

TABLE IV

FRAME RATE PERFORMANCE TESTING

Total

Source
CPU Condition FPS

1 camera Ryzen 3 5300U Without running YOLOv5 30

1 camera Ryzen 3 5300U Running YOLOv5 2

1 camera Ryzen 3 5300U When detecting the car 2

Car confidence value per slot Total

confi-

dence

Average

confi-

dence
1 2 3 4 5 6 7 8 9 10 11 12 13

-
88
%

- - -
88
%

80
%

-
82
%

92
%

93
%

- - 65,4

65,13%

-
80

%
- - -

87

%

89

%
-

81

%

85

%

88

%
- - 63,75

-
93

%
- - -

86

%

92

%
-

85

%

82

%

88

%
- - 65,75

-
89
%

- - -
89
%

93
%

-
80
%

90
%

88
%

- - 66,12

-
89
%

- - -
86
%

83
%

-
86
%

88
%

85
%

- - 64,62

Car confidence value per slot Total

confi-
dence

Average

confi-
dence 1 2 3 4 5 6 7 8 9 10 11 12 13

-
95

%

86

%

80

%
-

78

%

84

%

82

%
- -

83

%

83

%
- 83,9

85,13%

-
80

%

86

%

83

%
-

92

%
-

80

%
- -

85

%

84

%
- 84,2

-
80

%

83

%

83

%
-

80

%

95

%

82

%
- -

84

%

82

%
- 83,6

-
80
%

80
%

82
%

-
86
%

90
%

85
%

- -
80
%

82
%

- 83,1

-
89

%

86

%

86

%
-

80

%

85

%

90

%
- -

85

%

80

%
- 85,1

-
83

%

80

%

94

%
-

82

%

93

%

86

%
- -

89

%

85

%
- 86,5

-
92

%

83

%

84

%
-

95

%
-

87

%
- -

92

%

93

%
- 89,4

-
81

%

84

%

93

%
-

86

%
-

89

%
- -

82

%

88

%
- 86,1

-
83

%

84

%

92

%
-

90

%

80

%

82

%
- -

80

%

85

%
- 84,5

-
80

%

84

%

88

%
-

91

%

83

%

88

%
- -

93

%

87

%
- 86,7

-
88

%

83

%

84

%
-

80

%

89

%

83

%
- -

85

%

88

%
- 85

Car confidence value per slot Total
confi-

dence

Average
confi-

dence 1 2 3 4 5 6 7 8 9 10 11 12 13

-
84

%
- - -

87

%
- - - - - - - 85,5

87,7%

-
80
%

- - -
85
%

- - - - - - - 82,5

-
89

%
- - -

86

%
- - - - - - - 87,5

-
84
%

- - -
89
%

- - - - - - - 86,5

-
85

%
- - -

94

%
- - - - - - - 89,5

-
95
%

- - -
84
%

- - - - - - - 89,5

-
93

%
- - -

94

%
- - - - - - - 93,5

-
94
%

- - -
85
%

- - - - - - - 89,5

-
82

%
- - -

89

%
- - - - - - - 85,5

Journal of Telecommunication Network (Jurnal Jaringan Telekomunikasi) Vol. 14, No.2 (2024)

E-ISSN: 2654-6531 P- ISSN: 2407-0807 230

Total

Source
CPU Condition FPS

2 camera Ryzen 3 5300U Without running YOLOv5
12

12

2 camera Ryzen 3 5300U Running YOLOv5
2

2

2 camera Ryzen 3 5300U When detecting the car
2

2

1 camera BCM2711B0 Without running YOLOv5 12

1 camera BCM2711B0 Running YOLOv5 1

1 camera BCM2711B0 When detecting the car 1

2 camera BCM2711B0 Without running YOLOv5
12

12

2 camera BCM2711B0 Running YOLOv5
1

1

2 camera BCM2711B0 When detecting the car
1

1

From the Table IV, twelve tests were carried out to measure

the frame rate (fps) with three conditions, namely: first running

the camera without running the detection process using

YOLOv5, second when running the detection process using

YOLOv5, and third when YOLOv5 detected a car.

Performance testing was carried out on 1 camera using Ryzen

3 5300U and 1 camera using BCM2711B0. Performance on the

Ryzen 3 5300U produces a frame rate of 30 fps when not

running YOLOv5, 2 fps when running YOLOv5 and 2 fps

when a car is detected. Meanwhile, when using the

BCM2711B0 it produces a frame rate of 12 fps without running

YOLOv5, 1 fps when running YOLOv5 and 1 fps when a car

is detected.

Then the detection was carried out with 2 cameras using a

Ryzen 3 5300U producing a frame rate of 12 fps on both

cameras when not running YOLOv5, when running YOLOv5

it produced a frame rate of 2 fps on both cameras and when a

car was detected it produced a frame rate of 2 fps on both

cameras. Detection results with 2 cameras using the

BCM2711B0 are no different compared to using 1 camera. The

performance results of the BCM2711B0 using 2 cameras, when

not running YOLOv5 it is 12 fps, when running YOLOv5 it

produces a frame rate of 1 fps on both cameras, and when a car

is detected, it produces a frame rate of 1 fps on both cameras.
TABLE V

FRAME RATE PERFORMANCE TESTING

Total

Source
CPU Condition

Peak CPU

Usage Value

1

camera

Ryzen 3

5300U

Running YOLOv5 35,8%

Detects car 37,4%

2

camera

Ryzen 3

5300U

Running YOLOv5 40,8%

Detects car 42,2%

1

camera
BCM2711B0

Running YOLOv5 93,05%

Detects car 94,7%

2

camera
BCM2711B0

Running YOLOv5 94,525%

Detects car 95,025%

It can be seen that the performance of the Ryzen 3 5300U

CPU is indeed better than the BCM2711B0. There is a close

relationship between the CPU combination and the operating

system. The operating system and CPU work together to

manage and execute commands. Even though the CPU and

operating system has a relationship to improve performance,

the Raspberry Pi 4B does not have a feature to update the CPU

components.

Then the next test was carried out to get the CPU usage value

when running YOLOv5 on BCM2711B0 and Ryzen 3 5300U.

The resulting CPU usage value will be compared with the

frame rate performance results. Table V is a Table of CPU

usage testing when running YOLOv5 for the car detection

process.

From the Table V, four tests were carried out to measure the

peak value of CPU usage under two conditions, namely: first

when running the detection process using YOLOv5 on the

BCM2711B0 and Ryzen 3 5300U, second when the YOLOv5

method detected a car in the parking lot on the BCM2711B0

and Ryzen 3 5300U. This test was carried out with a variety of

sources, namely: one webcam and two webcams.

Based on the performance test, the peak value of

BCM2711B0 CPU usage is the result of calculations from quad

core CPU performance. By relying on the performance of four

CPU units, the CPU usage percentage value can reach a

maximum of 400% [14]. Therefore, percentage calculations are

carried out in the form of 0-100 percent. The following is the

formula used for this calculation:
𝑈𝑠𝑒𝑠 4 𝐶𝑃𝑈 𝑢𝑛𝑖𝑡𝑠

𝑚𝑎𝑥.𝑢𝑠𝑎𝑔𝑒 𝑜𝑓 4 𝐶𝑃𝑈 𝑢𝑛𝑖𝑡𝑠
 × 100% (2)

by using this formula, the percentage value for BCM2711B0

CPU usage is obtained with a percentage range of 0-100

percent. It can be concluded that the performance on the Ryzen

3 5300U is better than the BCM2711B0 on the Raspberry Pi

4B. Therefore, the small frame rate value when running on the

BCM2711B0 is caused by large CPU usage.

C. Testing the Calculation of Total Parking Space Availability

In this sub-chapter, a calculation system is tested by

simulating four empty parking lots with two cameras. This test

was carried out using a Ryzen 3 5300U CPU and BCM2711B0

running on a Raspberry Pi 4B. Information regarding vacant

land is located in the image as in Figure 4.6:

Figure 6. Place Information About Empty Parking Lots

Information regarding the total empty parking spaces is

displayed on the website display as system output. The Table

Journal of Telecommunication Network (Jurnal Jaringan Telekomunikasi) Vol. 14, No.2 (2024)

E-ISSN: 2654-6531 P- ISSN: 2407-0807 231

VI is the test results from calculating the total availability of

parking spaces:
TABLE VI

FRAME RATE PERFORMANCE TESTING

No.
Total

Obejcts
Jumlah Slot (simulasi) Total Slot Kosong

1 1 car 4 slots 3 slots

2 1 car 4 slots 3 slots

3 2 cars 4 slots 2 slots

4 2 cars 4 slots 2 slots

5 2 cars 4 slots 2 slots

6 3 cars 4 slots 1 slot

7 3 cars 4 slots 1 slot

8 4 cars 4 slots 0 slot

D. Website Testing as an Output System

This test is carried out to test the system output in the form

of a website. The website used as system output is the result of

integration of the Python language. The tool used to integrate

the Python language is Streamlit.

There is system output in the form of a local website display.

The website provides an information system regarding the

number of parking spaces available. The information system is

located at the bottom left of webcam video A. Videos on

websites can run in real-time with an average FPS value of one

second. The display of parking space availability runs

automatically. So, if a car enters the parking area, the

availability of parking space will decrease.

E. Data analysis

The results of testing the tool obtained an average

confidence value from testing in the morning and afternoon.

and in the afternoon, namely 65.13%, 85.13% and 87.7%.

When detecting cars in the morning, there is a hardware

limitation on one of the webcams. The weakness of the

webcam is that it has a small viewing distance or range, so it

cannot detect three parking lot slots. Therefore, during the

daytime test, a change was made to the webcam, which initially

could not detect three parking slots to one parking slot so that

twelve parking lots could be seen on two webcams.

Then, in performance testing on the Raspberry Pi 4B, the

frame rate and CPU usage values were obtained. In frame rate

performance testing, an average value of 1 fps was obtained.

This is influenced by CPU usage performance when carrying

out the detection process using the YOLOv5 method. In Figure

4.7, you can see that the CPU usage on the Raspberry Pi 4B is

372.3%, equivalent to 93.05% when running the detection

process using the YOLOv5 method.

The frame rate value can be optimized by reducing the video

resolution that will be detected by the YOLOv5 method. By

reducing the video resolution, CPU performance will decrease

[15]. However, video resolution that is too small causes a lack

of detection accuracy. So, in this research the video resolution

used in this research is 560p.

Then, the total availability calculation is displayed in the car

detection result frame using the YOLOv5 method as in Figure

4.6. The slot calculation results ran smoothly and did not

experience any problems. Assuming the total parking space in

the AH Polinema Building Parking is twelve slots, it is adjusted

to the range or viewing distance of the webcam. The total

parking area will decrease automatically when it detects a car

in the parking area [16]. The output of the parking space

availability detection system runs smoothly using a Streamlit-

based website.

IV. CONCLUSION

Based on the test results of the Parking Space Availability

Detection system in the AH Polinema Building Parking, it can

be concluded that: This research was carried out in two stages,

the first was designing and designing a parking lot monitoring

system using the YOLOv5 method, and the second was

implementing the system in the AH Polinema Building Parking.

The implementation process took approximately one month

and was installed on a light pole in the middle of the parking

lot. Object detection was successfully carried out in real-time.

YOLOv5 can detect objects accurately but does not run

optimally on the Raspberry Pi 4B. Changing video resolution

for detection using the YOLOv5 method can affect the

accuracy value. During the two days of testing, it was found

that the average confidence value in the afternoon was better

than in the morning and afternoon. The value of the parking

area calculation is going well. In the parking space calculation

test, the test was carried out by filling the parking space slots.

Information regarding the total parking area is located at the

bottom left of video display A on the website. The video

detection results that appear on the website run well. The video

runs according to the CPU computing capabilities of the

Raspberry Pi 4B. The website is used as the output of the

parking lot monitoring system using the YOLOv5 method in

the AH Polinema Building Parking. The framework used to

create websites is Streamlit. There were several obstacles

during the implementation process, for example the wrong

choice of camera hardware, the frame rate value was too small,

and limited land to install the equipment in the parking lot of

the AH Polinema Building. After various kinds of testing, the

system can run and can be implemented on lamp posts in the

AH Polinema Building Parking. Limitations were found on the

BCM2711B0 CPU used by the Raspberry Pi 4B, this CPU was

less than optimal in carrying out the detection process on two

cameras using the YOLOv5 method. The processing power of

the CPU can be optimized by reducing the video resolution, but

at the cost of reducing the accuracy value.

REFERENCES

[1] S. Sugianto dan M. A. & Kurniawan, “Tingkat

Ketertarikan Masyarakat terhadap Transportasi Online,

Angkutan Pribadi dan Angkutan Umum Berdasarkan

Persepsi,” Jurnal Teknologi Transportasi dan Logistik,

vol. 1, no. 2, pp. 51-58, 2020.

[2] D. I. Mulyana dan M. A. & Rofik, “Implementasi Deteksi

Real Time Klasifikasi Jenis Kendaraan Di Indonesia

Menggunakan Metode YOLOV5,” Jurnal Pendidikan

Tambusai, vol. 6, no. 3, pp. 13971-13982, 2022.

[3] S. Jupiyandi, F. R. Saniputra, Y. Pratama, M. R.

Dharmawan dan I. & Cholissodin, “Pengembangan

Journal of Telecommunication Network (Jurnal Jaringan Telekomunikasi) Vol. 14, No.2 (2024)

E-ISSN: 2654-6531 P- ISSN: 2407-0807 232

deteksi citra mobil untuk mengetahui jumlah tempat

parkir menggunakan CUDA dan modified YOLO,”

Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 6,

no. 4, pp. 413-419, 2019.

[4] S. E. Anjarwani, H. I. Illina dan N. & Agitha, “Sistem

Informasi Daya Tampung Area Parkir Pada Pusat

Perbelanjaan Untuk Meningkatkan Layanan Penggunaan

Parkir (Studi Kasus: Lombok Epicentrum Mall),” Journal

of Computer Science and Informatics Engineering, vol. 6,

no. 1, pp. 1-9, 2922.

[5] A. Amin dan M. W. & Kasrani, “Penerapan Metode Yolo

Object Detection V1 Terhadap Proses Pendeteksian Jenis

Kendaraan Di Parkiran,” Jurnal Teknik Elektro Uniba,

vol. 6, no. 1, pp. 194-199, 2021.

[6] Q. Aini, N. Lutfiani, H. Kusumah dan M. S. & Zahran,

“Deteksi dan Pengenalan Objek Dengan Model Machine

Learning: Model Yolo,” CESS (Journal of Computer

Engineering, System and Science), vol. 6, no. 2, pp. 192-

199, 2021.

[7] X. Cong, S. Li, F. Chen, C. Liu dan Y. & Meng, “A

Review of YOLO Object Detection Algorithms based on

Deep Learning,” Frontiers in Computing and Intelligent

Systems, vol. 4, no. 2, pp. 17-20, 2023.

[8] D. Manajang, S. Sompie dan A. Jacobus, “Implementasi

Framework Tensorflow Object Detection API Dalam

Mengklasifikasi Jenis Kendaraan Bermotor,” Jurnal

Teknik Informatika, vol. 15, no. 3, pp. 171-178, 2021.

[9] S. Liu, L. Qi, H. Qin, J. Shi dan a. J. Jia, “Path

Aggregation Network for Instance Segmentation,” dalam

IEEE/CVF Conference on Computer Vision and Pattern

Recognition, Salt Lake City, UT, USA, 2018.

[10] S. Ratna, “Pengolahan Citra Digital Dan Histogram

Dengan Phyton Dan Text Editor Phycharm,”

Technologia: Jurnal Ilmiah, vol. 11, no. 3, pp. 181-186,

2020.

[11] SketchUp, “SketchUp for Web,” SketchUp, July 2019

Version 1.3 . [Online]. Available: https://app.

sketchup.com/. [Accessed 22 03 2023].

[12] R. Pi, “Operating System Images,” Raspberry Pi,

[Online]. Available: https://www.raspberrypi.com/

software/operating-systems/. [Accessed 17 09 2023].

[13] Glenn Jocher, “ultralytics/yolov5: v6.0 - YOLOv5n

\'Nano\' models, Roboflow integration, TensorFlow

export, OpenCV DNN support,” dalam Zenodo, 2021.

[14] M. Carranza-García, J. Torres-Mateo, P. Lara-Benítez

dan J. & García-Gutiérrez, “On the performance of one-

stage and two-stage object detectors in autonomous

vehicles using camera data,” Remote Sensing, vol. 13, no.

1, p. 89, 2021.

[15] C. -Y. Wang, H. -Y. M. Liao, Y. -H. Wu, P. -Y. Chen, J.

-W. Hsieh dan a. I. -H. Yeh, “CSPNet: A New Backbone

that can Enhance Learning Capability of CNN,” dalam

IEEE/CVF Conference on Computer Vision and Pattern

Recognition Workshops (CVPRW), Seattle, WA, USA,

2020.

[16] N. Jannah, S. A. Wibowo dan T. S. Siadari, “Eksploitasi

Fitur Untuk Peningkatan Kinerja Deteksi Objek Berbasis

Pada Pesawat Tanpa Awak,” dalam eProceedings of

Engineering, 2022.

