Desain Sistem Smart Charger Berbasis Fuzzy untuk Optimasi Pengisian Baterai Li-Ion
DOI:
https://doi.org/10.33795/jip.v12i1.8110Keywords:
Baterai Li-Ion (Lithium-Ion), Fuzzy Logic, Pengisian Daya, Smart ChargeAbstract
Perkembangan teknologi perangkat portabel dan kendaraan listrik menuntut sistem pengisian baterai yang efisien, aman, dan adaptif. Penelitian ini merancang dan mengimplementasikan sistem Smart Charger berbasis logika fuzzy untuk optimasi pengisian baterai lithium-ion (Li-Ion). Sistem mengintegrasikan sensor suhu dan tegangan dengan mikrokontroler untuk mengatur arus pengisian secara dinamis berdasarkan input parameter aktual seperti suhu baterai, tegangan awal, dan kapasitas sisa (State of Charge). Pengujian dilakukan pada berbagai skenario suhu lingkungan dan kondisi baterai. Hasil menunjukkan bahwa sistem fuzzy mampu memberikan kestabilan keluaran berdasarkan inputan yang diberikan dibandingkan dengan charger konvensional. Sistem akan menyesuaikan arus pengisian dengan kondisi baterai, khususnya pada suhu tinggi, tanpa intervensi manual. Penelitian ini membuktikan bahwa penerapan fuzzy logic dalam sistem pengisian baterai dapat memberikan peningkatan performa, keamanan, dan efisiensi. Sistem ini memiliki potensi untuk dikembangkan dan diterapkan pada berbagai perangkat elektronik serta dapat dikembangkan lebih lanjut dengan pendekatan adaptive rule learning dan integrasi antarmuka pemantauan real-time
Downloads
References
Barini, G. O., Ngoo, L. M., & Mwangi, R. W. (2019). Application of a fuzzy unit hypercube in cardiovascular risk classification. Soft Computing, 23(23), 12521–12527. https://doi.org/10.1007/s00500-019-03802-0
Chopra, P., & Gupta, M. (2023). Fuzzy Logic and ANN in an Artificial Intelligent Cloud: A Comparative Study BT - Intelligent Communication Technologies and Virtual Mobile Networks (G. Rajakumar, K.-L. Du, & Á. Rocha (eds.); pp. 559–570). Springer Nature Singapore.
Hasan, M. M., Haque, R., Jahirul, M. I., Rasul, M. G., Fattah, I. M. R., Hassan, N. M. S., & Mofijur, M. (2025). Advancing energy storage: The future trajectory of lithium-ion battery technologies. Journal of Energy Storage, 120, 116511. https://doi.org/https://doi.org/10.1016/j.est.2025.116511
Maheswaran, V. D., Carter, S. B. R., Vijay, V., & Raj, S. V. (2024). Study and Implementation of Constant Current-Constant Voltage(CC-CV) Charger for Lithium-Ion(Li-Ion) Battery Using Machine Learning(ML). 2024 IEEE 4th International Conference on Sustainable Energy and Future Electric Transportation (SEFET), 1–5. https://doi.org/10.1109/SEFET61574.2024.10717980
Rahmawati, Y., Fadhilla, K. L., & Kadarina, T. M. (2024). Analysis of Power Quality in Low Voltage Switch Panels in Real-Time Based on IoT Using the Fuzzy Logic Method. Journal of Informatics and Telecommunication Engineering, 7(2), 486–501. https://doi.org/10.31289/jite.v7i2.10750
Ramírez, M., Melin, P., & Castillo, O. (2023). Interval Type-3 Fuzzy Aggregation for Hybrid-Hierarchical Neural Classification and Prediction Models in Decision-Making. Axioms, 12(10), 906. https://doi.org/10.3390/axioms12100906
S, S. C. V, A., K., S., M., & Venkateshkumar, M. (2024). Photovoltaic Charger with Fuzzy Logic Control for Lithium-ion Battery Charging. 2024 2nd International Conference on Cyber Physical Systems, Power Electronics and Electric Vehicles (ICPEEV), 1–6. https://doi.org/10.1109/ICPEEV63032.2024.10931933
Utomo, S. B., Imron, A. M. N., Sujanarko, B., Putra, M. G., Irawan, J. F., & Fitri, Z. E. (2024). Fuzzy-Logic Based Fast-Charger Design For Lithium Polymer Battery Charging. 2024 IEEE 2nd International Conference on Electrical Engineering, Computer and Information Technology (ICEECIT), 227–232. https://doi.org/10.1109/ICEECIT63698.2024.10859512
Wang, H. T., Chiang, K. L., Pan, N. F., & Lin, Y. F. (2023). The Road to Sustainable Logistics: Using the Fuzzy Nonlinear Multi-Objective Optimization Model to Build Photovoltaic Stations in Taiwan’s Logistics Centers. Sustainability (Switzerland), 15(23). https://doi.org/10.3390/su152316449
Waqar, I., Azizi, Z., Nikmal, P., Rafi, R., Ulfat, W., Abid, O., Niazi, M. J., & Khan, Z. (2023). Comparison between Electromotive Force and Electric Potential Difference. Turkish Journal of Computer and Mathematics Education, 14(01), 236–242.
Xiong, R., Cao, J., Yu, Q., He, H., & Sun, F. (2018). Critical Review on the Battery State of Charge Estimation Methods for Electric Vehicles. IEEE Access, 6, 1832–1843. https://doi.org/10.1109/ACCESS.2017.2780258
Zhang, D., Zhao, W., Wang, L., Chang, X., Li, X., & Wu, P. (2022). Evaluation of the State of Health of Lithium-Ion Battery Based on the Temporal Convolution Network. Frontiers in Energy Research, 10(June), 1–8. https://doi.org/10.3389/fenrg.2022.929235






