Model Otomatisasi Cerdas Berbasis data Spasial untuk Prioritas Perbaikan Jalan Rusak
DOI:
https://doi.org/10.33795/jip.v12i1.8654Keywords:
kerusakan jalan, Sistem Informasi Geografis, Random Forest, sistem rekomendasiAbstract
Kerusakan jalan berdampak signifikan terhadap keselamatan dan efisiensi sosial-ekonomi. Pendekatan manual dalam menentukan prioritas perbaikan seringkali tidak akurat, terutama di wilayah dengan karakteristik spasial kompleks seperti Kabupaten Pasuruan. Penelitian ini mengusulkan sistem rekomendasi cerdas berbasis data spasial menggunakan model hybrid, yang mengintegrasikan metode Simple Additive Weighting (SAW) untuk perankingan dan Random Forest (RF) untuk validasi klasifikasi. Dataset mencakup 100 segmen jalan dengan atribut spasial dan non-spasial. SAW berhasil mengklasifikasikan segmen ke dalam tiga kelas prioritas dengan tingkat konsistensi 92%, yang didukung oleh hasil RF. Model RF juga menunjukkan kinerja baik dengan precision, recall, dan F1-score rata-rata sebesar 0,87, serta mampu mengidentifikasi fitur penting. Integrasi SAW-RF dalam kerangka GIS terbukti efektif meningkatkan efisiensi dan transparansi. Prototipe ini berpotensi untuk direplikasi di daerah lain menggunakan platform open source
Downloads
References
Adam, S. I., Rotikan, R., Pasombaran, P. S., & Posumah, G. J. (2022). Mobile-Based Road Infrastructure Damage Reporting Service Application. 2022 4th International Conference on Cybernetics and Intelligent System (ICORIS), 1–7. https://doi.org/10.1109/ICORIS56080.2022.10031418
Akindele, O., Ajayi, S., Oyegoke, A. S., Alaka, H. A., & Omotayo, T. (2023). Application of Geographic Information System (GIS) in construction: a systematic review. Smart and Sustainable Built Environment, 14(1), 210–236. https://doi.org/10.1108/SASBE-01-2023-0016
Alkhaleel, B. A. (2024). Machine learning applications in the resilience of interdependent critical infrastructure systems—A systematic literature review. International Journal of Critical Infrastructure Protection, 44, 100646. https://doi.org/https://doi.org/10.1016/j.ijcip.2023.100646
Anugraha, A. S., Erdiza, H. P., Apriyadi, D., & Aguscandra, B. (2022). Integration of Geospatial and Citizen Participation Using Geographic Information System for Smart City: a Study of Priority Villages Program in Jakarta, Indonesia. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 48(4/W5-2022), 17–24. https://doi.org/10.5194/isprs-archives-XLVIII-4-W5-2022-17-2022
Choudhury, A., Mondal, A., & Sarkar, S. (2024). Searches for the BSM scenarios at the LHC using decision tree-based machine learning algorithms: a comparative study and review of random forest, AdaBoost, XGBoost and LightGBM frameworks. European Physical Journal: Special Topics, 233(15–16), 2425–2463. https://doi.org/10.1140/epjs/s11734-024-01308-x
Fang, W., Chen, Y., Ding, J., Yu, Z., Masquelier, T., Chen, D., Huang, L., Zhou, H., Li, G., & Tian, Y. (2023). SpikingJelly: An open-source machine learning infrastructure platform for spike-based intelligence. Science Advances, 9(40), 1–116. https://doi.org/10.1126/sciadv.adi1480
Firouraghi, N., Kiani, B., Jafari, H. T., Learnihan, V., Salinas-Perez, J. A., Raeesi, A., Furst, M. A., Salvador-Carulla, L., & Bagheri, N. (2022). The role of geographic information system and global positioning system in dementia care and research: a scoping review. International Journal of Health Geographics, 21(1), 1–13. https://doi.org/10.1186/s12942-022-00308-1
Jigar Shah. (2023). Scalable Machine Learning Infrastructure on Cloud for Large-Scale Data Processing. Tuijin Jishu/Journal of Propulsion Technology, 42(2), 45–53. https://doi.org/10.52783/tjjpt.v42.i2.7166
Khan, M. W., Obaidat, M. S., Mahmood, K., Batool, D., Badar, H. M. S., Aamir, M., & Gao, W. (2024). Real-Time Road Damage Detection and Infrastructure Evaluation Leveraging Unmanned Aerial Vehicles and Tiny Machine Learning. IEEE Internet of Things Journal, 11(12), 21347–21358. https://doi.org/10.1109/JIOT.2024.3385994
Madhusudhan, H. S., Kumar T, S., Mustapha, S. M. F. D. S., Gupta, P., & Tripathi, R. P. (2021). Hybrid Approach for Resource Allocation in Cloud Infrastructure Using Random Forest and Genetic Algorithm. Scientific Programming, 2021. https://doi.org/10.1155/2021/4924708
Nitayaprapha, T., Pochan, J., Panichakarn, B., & Kulthunyahirun, S. (2025). A route selection process using a multicriteria decision-making (MCDM) approach based on the simple additive weighting (SAW) method: Evidence from Thai fresh fruit exported to China by road transportation. Decision Science Letters, 14(3), 739–752. https://doi.org/10.5267/j.dsl.2025.3.007
Putri, A., & Nazhifah, S. A. (2022). Pemanfaatan Google Earth untuk pemetaan Point of Interest dengan menggunakan Keyhole Markup Language (Studi Kasus di Darussalam dan Lampineung Banda Aceh). Jurnal Teknologi Informasi, 1(1), 16–21. https://doi.org/10.35308/.v1i1.5504
Raja, D. J. S., Sriranjani, R., Arulmozhi, P., & Hemavathi, N. (2024). Unified Random Forest and Hybrid Bat Optimization Based Man-in-the-Middle Attack Detection in Advanced Metering Infrastructure. IEEE Transactions on Instrumentation and Measurement, 73, 1–12. https://doi.org/10.1109/TIM.2024.3420375
Singh, A. (2024). Architecting Ethical Machine Learning Infrastructure: a Systematic Framework for Technical Implementation. International Journal of Computer Engineering and Technology, 15(6), 1875–1886. https://doi.org/10.34218/ijcet_15_06_160
Sui, X., Leng, Z., & Wang, S. (2023). Machine learning-based detection of transportation infrastructure internal defects using ground-penetrating radar: a state-of-the-art review. Intelligent Transportation Infrastructure, 2, liad004. https://doi.org/10.1093/iti/liad004
Trianasari, N., & Permadi, T. A. (2024). Analysis of Product Recommendation Models at Each Fixed Broadband Sales Location Using K-Means, DBSCAN, Hierarchical Clustering, SVM, RF, and ANN. Journal of Applied Data Sciences, 5(2), 636–652. https://doi.org/10.47738/jads.v5i2.210






