Klasifikasi Tweet Cyberbullying di Aplikasi X dengan Algoritma Naïve Bayes

Authors

  • Esti Mulyani Politeknik Negeri Indramayu
  • Hurul Aini Putri Prasetya

DOI:

https://doi.org/10.33795/jip.v12i1.8992

Abstract

Perkembangan media sosial telah memberikan pengaruh yang signifikan dalam membentuk pola komunikasi dan interaksi masyarakat modern. Di balik manfaat yang ditawarkan, media sosial juga menjadi ruang terbuka bagi munculnya konten negatif, salah satunya adalah cyberbullying. Penelitian ini bertujuan untuk mengembangkan sistem klasifikasi dua tahap guna mendeteksi serta mengidentifikasi bentuk-bentuk cyberbullying dalam tweet berbahasa Indonesia. Data dikumpulkan melalui proses crawling berbasis autentikasi sesi pengguna (auth token) dengan pendekatan kata kunci tertentu. Metode yang digunakan meliputi pra-pemrosesan data teks, ekstraksi fitur menggunakan Term Frequency-Inverse Document Frequency (TF-IDF), serta pelatihan model klasifikasi menggunakan algoritma Multinomial Naïve Bayes. Pada tahap pertama, dilakukan klasifikasi biner untuk membedakan antara tweet yang mengandung unsur cyberbullying dan yang tidak, dengan akurasi mencapai 95%. Tahap kedua merupakan klasifikasi multikelas terhadap enam kategori cyberbullying, yaitu pelecehan, penghinaan, kata kasar, body shaming, ancaman, ambiguitas dan SARA, yang menghasilkan akurasi sebesar 82%. Seluruh hasil klasifikasi divisualisasikan secara interaktif melalui aplikasi web berbasis Python Flask. Hasil penelitian ini menunjukkan bahwa pendekatan dua tahap klasifikasi dengan algoritma Naïve Bayes mampu mengidentifikasi konten cyberbullying secara efektif, serta berpotensi digunakan sebagai salah satu alat bantu untuk mendukung upaya pencegahan perundungan daring di media sosial.

Downloads

Download data is not yet available.

References

Abdulloh, N., & Hidayatullah, A. F. (2021). Deteksi Cyberbullying pada Cuitan Media Sosial Twitter. Automata, Vol 1(1), 1–5.

Alfarizi, M. I., Syafaah, L., & Lestandy, M. (2022). Emotional Text Classification Using TF-IDF (Term Frequency-Inverse Document Frequency) And LSTM (Long Short-Term Memory). JUITA : Jurnal Informatika, 10(2), 225. https://doi.org/10.30595/juita.v10i2.13262

Azumah, S. W., Elsayed, N., Elsayed, Z., Ozer, M., & Guardia, A. La. (2024). Deep Learning Approaches for Detecting Adversarial Cyberbullying and Hate Speech in Social Networks. 2024 2nd International Conference on Artificial Intelligence, Blockchain, and Internet of Things, AIBThings 2024 - Proceedings. https://doi.org/10.1109/AIBThings63359.2024.10863625

Azzahra, S. A., & Majid, N. W. A. (2025). Klasifikasi dan Analisis Semantik Cyberbullying Sosial Media X: Integrasi Web Scraping dan Natural Language Processing (NLP). Jurnal Educatio FKIP UNMA, 11(2), 353–360. https://doi.org/10.31949/educatio.v11i2.12725

Bilgin, M., & Bekar, B. N. (2025). Turkish Cyberbullying Detection with Fine-Tuned Pre-Trained Language Models. Bilişim Teknolojileri Dergisi, 18(2), 115–127. https://doi.org/10.17671/gazibtd.1528238

Chen, S., Wang, J., & He, K. (2024). Chinese Cyberbullying Detection Using XLNet and Deep Bi-LSTM Hybrid Model. Information (Switzerland), 15(2). https://doi.org/10.3390/info15020093

Chia, Z. L., Ptaszynski, M., Masui, F., Leliwa, G., & Wroczynski, M. (2021). Machine Learning and feature engineering-based study into sarcasm and irony classification with application to cyberbullying detection. Information Processing and Management, 58(4), 1–33. https://doi.org/10.1016/j.ipm.2021.102600

Cuzzocrea, A., Akter, M. S., Shahriar, H., & Garcia Bringas, P. (2025). Cyberbullying Detection, Prevention, and Analysis on Social Media via Trustable LSTM-Autoencoder Networks over Synthetic Data: The TLA-NET Approach †. Future Internet, 17(2). https://doi.org/10.3390/fi17020084

Farasalsabila, F., Utami, E., & Hanafi, H. (2024). Deteksi Cyberbullying Menggunakan BERT dan Bi-LSTM. Jurnal Teknologi, 17(1), 1–6. https://doi.org/10.34151/jurtek.v17i1.4636

Fati, S. M., Muneer, A., Alwadain, A., & Balogun, A. O. (2023). Correction to: Cyberbullying Detection on Twitter Using Deep Learning-Based Attention Mechanisms and Continuous Bag of Words Feature Extraction (Mathematics, (2023), 11, 16, (3567), 10.3390/math11163567). Mathematics, 11(21). https://doi.org/10.3390/math11214494

López-Vizcaíno, M. F., Nóvoa, F. J., Carneiro, V., & Cacheda, F. (2021). Early detection of cyberbullying on social media networks. Future Generation Computer Systems, 118, 219–229. https://doi.org/10.1016/j.future.2021.01.006

Mubeen, M., Muskan, A., Akram, A., Rashid, J., Alshalali, T. A. N., & Sarwar, N. (2025). Cyberbullying-Related Automated Hate Speech Detection on Social Media Platforms Using Stack Ensemble Classification Method. International Journal of Computational Intelligence Systems, 18(1). https://doi.org/10.1007/s44196-025-00919-z

Muneer, A., Alwadain, A., Ragab, M. G., & Alqushaibi, A. (2023). Cyberbullying Detection on Social Media Using Stacking Ensemble Learning and Enhanced BERT. Information (Switzerland), 14(8). https://doi.org/10.3390/info14080467

Ogunleye, B., & Dharmaraj, B. (2023). The Use of a Large Language Model for Cyberbullying Detection. Analytics, 2(3), 694–707. https://doi.org/10.3390/analytics2030038

Philipo, A. G., Sarwatt, D. S., Ding, J., Daneshmand, M., & Ning, H. (2024). Assessing Text Classification Methods for Cyberbullying Detection on Social Media Platforms. 1–15. https://arxiv.org/pdf/2412.19928

Prabowo, W. A., & Azizah, F. (2020). Sentiment Analysis for Detecting Cyberbullying Using TF-IDF and SVM. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 4(6). https://doi.org/10.29207/resti.v4i6.2753

Ridwan, M., & Muzakir, A. (2022). Model Klasifikasi Ujaran Kebencian pada Data Twitter dengan Menggunakan CNN-LSTM. Teknomatika: Jurnal Teknologi & Informatika, 12(02), 209–218. https://ojs.palcomtech.ac.id/index.php/teknomatika/article/view/604

Rifai, H. S., Febrianti, S., & Santoso, I. (2023). Analisis Sentimen Tanggapan Masyarakat Terhadap Cyberbullying Di Media Sosial Menggunakan Algoritma Naïve Bayes ( Nb ). Jurnal Ikraith-Informatika, 7(2), 183–196.

Rosa, H., Pereira, N., Ribeiro, R., Ferreira, P. C., Carvalho, J. P., Oliveira, S., Coheur, L., Paulino, P., Veiga Simão, A. M., & Trancoso, I. (2019a). Automatic cyberbullying detection: A systematic review. Computers in Human Behavior, 93(October 2018), 333–345. https://doi.org/10.1016/j.chb.2018.12.021

Rosa, H., Pereira, N., Ribeiro, R., Ferreira, P. C., Carvalho, J. P., Oliveira, S., Coheur, L., Paulino, P., Veiga Simão, A. M., & Trancoso, I. (2019b). Automatic cyberbullying detection: A systematic review. Computers in Human Behavior, 93, 333–345. https://doi.org/10.1016/J.CHB.2018.12.021

Wibisono, B., Machmud, A., Suryani, N., & Yunita, Y. (2025). Analisis Sentimen Cyberbullying Pada Komentar X Menggunakan Metode Naïve Bayes. Computer Science (CO-SCIENCE), 5(1), 8–16. https://doi.org/10.31294/coscience.v5i1.5152

Downloads

Published

2025-11-30

How to Cite

Mulyani, E., & Aini Putri Prasetya, H. (2025). Klasifikasi Tweet Cyberbullying di Aplikasi X dengan Algoritma Naïve Bayes. Jurnal Informatika Polinema, 12(1), 73–84. https://doi.org/10.33795/jip.v12i1.8992