Klasifikasi Tweet Cyberbullying di Aplikasi X dengan Algoritma Naïve Bayes
DOI:
https://doi.org/10.33795/jip.v12i1.8992Abstract
Perkembangan media sosial telah memberikan pengaruh yang signifikan dalam membentuk pola komunikasi dan interaksi masyarakat modern. Di balik manfaat yang ditawarkan, media sosial juga menjadi ruang terbuka bagi munculnya konten negatif, salah satunya adalah cyberbullying. Penelitian ini bertujuan untuk mengembangkan sistem klasifikasi dua tahap guna mendeteksi serta mengidentifikasi bentuk-bentuk cyberbullying dalam tweet berbahasa Indonesia. Data dikumpulkan melalui proses crawling berbasis autentikasi sesi pengguna (auth token) dengan pendekatan kata kunci tertentu. Metode yang digunakan meliputi pra-pemrosesan data teks, ekstraksi fitur menggunakan Term Frequency-Inverse Document Frequency (TF-IDF), serta pelatihan model klasifikasi menggunakan algoritma Multinomial Naïve Bayes. Pada tahap pertama, dilakukan klasifikasi biner untuk membedakan antara tweet yang mengandung unsur cyberbullying dan yang tidak, dengan akurasi mencapai 95%. Tahap kedua merupakan klasifikasi multikelas terhadap enam kategori cyberbullying, yaitu pelecehan, penghinaan, kata kasar, body shaming, ancaman, ambiguitas dan SARA, yang menghasilkan akurasi sebesar 82%. Seluruh hasil klasifikasi divisualisasikan secara interaktif melalui aplikasi web berbasis Python Flask. Hasil penelitian ini menunjukkan bahwa pendekatan dua tahap klasifikasi dengan algoritma Naïve Bayes mampu mengidentifikasi konten cyberbullying secara efektif, serta berpotensi digunakan sebagai salah satu alat bantu untuk mendukung upaya pencegahan perundungan daring di media sosial.
Downloads
References
Abdulloh, N., & Hidayatullah, A. F. (2021). Deteksi Cyberbullying pada Cuitan Media Sosial Twitter. Automata, Vol 1(1), 1–5.
Alfarizi, M. I., Syafaah, L., & Lestandy, M. (2022). Emotional Text Classification Using TF-IDF (Term Frequency-Inverse Document Frequency) And LSTM (Long Short-Term Memory). JUITA : Jurnal Informatika, 10(2), 225. https://doi.org/10.30595/juita.v10i2.13262
Azumah, S. W., Elsayed, N., Elsayed, Z., Ozer, M., & Guardia, A. La. (2024). Deep Learning Approaches for Detecting Adversarial Cyberbullying and Hate Speech in Social Networks. 2024 2nd International Conference on Artificial Intelligence, Blockchain, and Internet of Things, AIBThings 2024 - Proceedings. https://doi.org/10.1109/AIBThings63359.2024.10863625
Azzahra, S. A., & Majid, N. W. A. (2025). Klasifikasi dan Analisis Semantik Cyberbullying Sosial Media X: Integrasi Web Scraping dan Natural Language Processing (NLP). Jurnal Educatio FKIP UNMA, 11(2), 353–360. https://doi.org/10.31949/educatio.v11i2.12725
Bilgin, M., & Bekar, B. N. (2025). Turkish Cyberbullying Detection with Fine-Tuned Pre-Trained Language Models. Bilişim Teknolojileri Dergisi, 18(2), 115–127. https://doi.org/10.17671/gazibtd.1528238
Chen, S., Wang, J., & He, K. (2024). Chinese Cyberbullying Detection Using XLNet and Deep Bi-LSTM Hybrid Model. Information (Switzerland), 15(2). https://doi.org/10.3390/info15020093
Chia, Z. L., Ptaszynski, M., Masui, F., Leliwa, G., & Wroczynski, M. (2021). Machine Learning and feature engineering-based study into sarcasm and irony classification with application to cyberbullying detection. Information Processing and Management, 58(4), 1–33. https://doi.org/10.1016/j.ipm.2021.102600
Cuzzocrea, A., Akter, M. S., Shahriar, H., & Garcia Bringas, P. (2025). Cyberbullying Detection, Prevention, and Analysis on Social Media via Trustable LSTM-Autoencoder Networks over Synthetic Data: The TLA-NET Approach †. Future Internet, 17(2). https://doi.org/10.3390/fi17020084
Farasalsabila, F., Utami, E., & Hanafi, H. (2024). Deteksi Cyberbullying Menggunakan BERT dan Bi-LSTM. Jurnal Teknologi, 17(1), 1–6. https://doi.org/10.34151/jurtek.v17i1.4636
Fati, S. M., Muneer, A., Alwadain, A., & Balogun, A. O. (2023). Correction to: Cyberbullying Detection on Twitter Using Deep Learning-Based Attention Mechanisms and Continuous Bag of Words Feature Extraction (Mathematics, (2023), 11, 16, (3567), 10.3390/math11163567). Mathematics, 11(21). https://doi.org/10.3390/math11214494
López-Vizcaíno, M. F., Nóvoa, F. J., Carneiro, V., & Cacheda, F. (2021). Early detection of cyberbullying on social media networks. Future Generation Computer Systems, 118, 219–229. https://doi.org/10.1016/j.future.2021.01.006
Mubeen, M., Muskan, A., Akram, A., Rashid, J., Alshalali, T. A. N., & Sarwar, N. (2025). Cyberbullying-Related Automated Hate Speech Detection on Social Media Platforms Using Stack Ensemble Classification Method. International Journal of Computational Intelligence Systems, 18(1). https://doi.org/10.1007/s44196-025-00919-z
Muneer, A., Alwadain, A., Ragab, M. G., & Alqushaibi, A. (2023). Cyberbullying Detection on Social Media Using Stacking Ensemble Learning and Enhanced BERT. Information (Switzerland), 14(8). https://doi.org/10.3390/info14080467
Ogunleye, B., & Dharmaraj, B. (2023). The Use of a Large Language Model for Cyberbullying Detection. Analytics, 2(3), 694–707. https://doi.org/10.3390/analytics2030038
Philipo, A. G., Sarwatt, D. S., Ding, J., Daneshmand, M., & Ning, H. (2024). Assessing Text Classification Methods for Cyberbullying Detection on Social Media Platforms. 1–15. https://arxiv.org/pdf/2412.19928
Prabowo, W. A., & Azizah, F. (2020). Sentiment Analysis for Detecting Cyberbullying Using TF-IDF and SVM. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 4(6). https://doi.org/10.29207/resti.v4i6.2753
Ridwan, M., & Muzakir, A. (2022). Model Klasifikasi Ujaran Kebencian pada Data Twitter dengan Menggunakan CNN-LSTM. Teknomatika: Jurnal Teknologi & Informatika, 12(02), 209–218. https://ojs.palcomtech.ac.id/index.php/teknomatika/article/view/604
Rifai, H. S., Febrianti, S., & Santoso, I. (2023). Analisis Sentimen Tanggapan Masyarakat Terhadap Cyberbullying Di Media Sosial Menggunakan Algoritma Naïve Bayes ( Nb ). Jurnal Ikraith-Informatika, 7(2), 183–196.
Rosa, H., Pereira, N., Ribeiro, R., Ferreira, P. C., Carvalho, J. P., Oliveira, S., Coheur, L., Paulino, P., Veiga Simão, A. M., & Trancoso, I. (2019a). Automatic cyberbullying detection: A systematic review. Computers in Human Behavior, 93(October 2018), 333–345. https://doi.org/10.1016/j.chb.2018.12.021
Rosa, H., Pereira, N., Ribeiro, R., Ferreira, P. C., Carvalho, J. P., Oliveira, S., Coheur, L., Paulino, P., Veiga Simão, A. M., & Trancoso, I. (2019b). Automatic cyberbullying detection: A systematic review. Computers in Human Behavior, 93, 333–345. https://doi.org/10.1016/J.CHB.2018.12.021
Wibisono, B., Machmud, A., Suryani, N., & Yunita, Y. (2025). Analisis Sentimen Cyberbullying Pada Komentar X Menggunakan Metode Naïve Bayes. Computer Science (CO-SCIENCE), 5(1), 8–16. https://doi.org/10.31294/coscience.v5i1.5152






