

Journal homepage: http://jos-mrk.polinema.ac.id/
ISSN: 2722-9203 (media online/daring)

ANALISIS PERBAIKAN STABILITAS LERENG DENGAN METODE KOMBINASI VEGETASI DAN *SOIL NAILING* DI AREA PROYEK *SPILLWAY* BENDUNGAN TUGU KABUPATEN TRENGGALEK

Annisa Dewi Rahmawati^{1,*}, Moch. Sholeh², Bobby Asukmajaya R.³

Mahasiswa Manajemen Rekayasa Konstruksi, Jurusan Teknik Sipil Politeknik Negeri Malang¹, Dosen Jurusan Teknik Sipil Politeknik Negeri Malang², Dosen Jurusan Teknik Sipil Politeknik Negeri Malang³

Email: <u>1741320156@student.polinema.ac.id</u>l , <u>moch.sholeh@polinema.ac.id</u>² , <u>bobby_asukma@polinema.ac.id</u>³

ABSTRAK

Lereng di area proyek Bengdungan Tugu, Kabupaten Trenggalek memiliki kemiringan eksisting 1:0,6 tanpa perkuatan, dan panjang 24,713 m. Perhitungan kondisi eksisting dengan *GeoStudio SLOPE/W 2012* didapatkan FK 0,650 tanpa beban gempa dan 0,415 dengan beban gempa. Hasil perhitungan yang tidak memenuhi nilai faktor keamanan tersebut merupakan data eksisting yang penulis gunakan untuk memperbaiki stabilitas lereng tersebut. Pekerjaan yang dilakukan untuk perbaikan stabilitas lereng meliputi penanaman rumput vetiver dan *soil nailing*. Data yang diperlukan meliputi data hasil *boring log*, yaitu data kohesi, sudut geser dalam, dan berat isi tanah. Pada pekerjaan rumput vetiver dilakukan penggujian menggunakan 3 jenis sampel tanah, sedangkan pada pengaplikasian *soil nailing* dilakukan percobaan dengan 4 kemiringan *nail* yang berbeda. Dari hasil perhitungan pekerjaan stabilitas dengan rumput vetiver, didapatkan nilai faktor keamanan terbesar pada pengujian sampel 3 sebesar 0,899 tanpa beban gempa dan 0,594 dengan beban gempa. Sehingga perlu ditambahkan perkuatan *soil nailing* dengan kemiringan 20° dan didapatkan FK sebesar 2,138 tanpa beban gempa dan 1,142 dengan beban gempa. Rencana anggaran biaya untuk seluruh pekerjaan sebesar Rp 2.978.041.000,-

Kata kunci: perbaikan stabilitas, faktor keamanan, vetiver, soil nailing, rencana anggaran biaya

ABSTRACT

The slope in the Bengdungan Tugu project area, Trenggalek Regency has an existing slope of 1:0.6 without reinforcement, and a length of 24,713 m. The calculation of existing conditions with GeoStudio SLOPE / W 2012 the obtained SF was 0.650 without earthquake load and 0.415 with earthquake load. The calculation results that did not reach the safety factor value were existing data that the author used to improve the stability of the slope. Work undertaken to improve slope stability includes planting vetiver grass and soil nailing. The required data includes boring log data, namely cohesion data, deep shear angle, and soil fill weight. In vetiver grass work, testing was carried out using three types of soil samples, while in the application of soil nailing; experiments were carried out with four different nail slopes. From the calculation of stability work with vetiver grass, the largest safety factor value was obtained in the third sample testing of 0.899 without earthquake load and 0.594 with earthquake load. Therefore, it is necessary to add soil nailing reinforcement with a slope of 20 ° and the obtained SF of 2.138 without earthquake load and 1.142 with earthquake load. The budget plan for all works is at 2,978,041,000 IDR

Keywords: stability improvements, safety factors, vetiver, soil nailing, cost budget plans

1. PENDAHULUAN

Spillway Bendungan Tugu terletak di Desa Nglinggis, Kecamatan Tugu, Kabupaten Trenggalek. Longsor merupakan salah satu bencana alam yang rawan terjadi pada lereng. Terutama lereng yang gundul atau lereng yang tidak terdapat tumbuhan diatasnya. Seringkali longsor terjadi saat

musim penghujan. Perbaikan stabilitas lereng sendiri diperlukan guna mengantisipasi kemungkinan longsor yang dapat terjadi. Terdapat beberapa faktor yang dapat menjadi penyebab terjadinya longsor. Terzaghi (1950) dalam bukunya menyebutkan bahwa penyebab terjadinya longsor dapat dipengaruhi oleh pengaruh dalam atau *internal effect*

dan pengaruh luar atau *external effect*. Contoh dari pengaruh dalam adalah tanpa ada campur tangan kondisi luar. Sedangkan contoh dari pengaruh luar adalah perbuatan manusia yang melakukan galian tanah lebih dalam.

Untuk menstabilkan sebuah lereng, banyak sekali metode yang dapat digunakan, salah satunya adalah Metode Fellenius yang menganggap bahwa gaya yang bekerja pada sisi kanan dan kiri dari irisan memiliki nilai resultan nol pada arah tegak lurus bidang longsor. Metode Fellenius dipilih karena metode ini lebih sederhana dengan data yang digunakan untuk tanah yang memiliki nilai kohesif dan sudut geser tanah (c dan φ).

Pada bagian selatan dari bangunan *spillway* terdapat lereng yang tinggi dan curam. Dengan permasalahan tanah tersebut maka digunakan cara untuk menstabilkan lereng tersebut, yaitu menggunakan metode vegetasi menggunakan rumput vetiver. Penggunaan rumput vetiver dipilih karena biaya yang digunakan relative murah dan juga ramah lingkungan.

Berdasarkan latar belakang yang dijelaskan, rumusan masalah yang didapat sebagai berikut :

- Bagaimana analisis stabilitas lereng dengan Metode Fellenius pada Lereng Spillway Bendungan Tugu sebelum dan setelah redesign?
- 2. Bagaimana analisis stabilitas lereng dengan Metode Fellenius pada Lereng Spillway Bendungan Tugu setelah diperkuat dengan rumput vetiver dan *soil nailing*?
- 3. Bagaimana metode pelaksanaan pekerjaan stabilitas Lereng Spillway Bendungan Tugu?
- 4. Bagaimana perhitungan Rencana Anggaran Biaya (RAB) dari kemiringan Lereng Spillway Bendungan Tugu setelah *redesign* dan ditanami rumput vetiver dan pemasangan *soil nailing*?

2. METODE

Dalam perencanaan stabilitas lereng, terdapat beberapa prosedur yaitu :

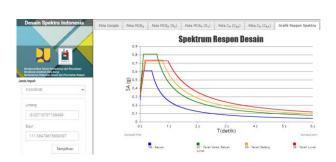
- Menentukan karakteristik tanah sesuai dengan pengujian yang dilakukan.
- 2. Pada pengujian *boring log* akan didapatkan jenis lapisan tanah.
- 3. Nilai kohesi, sudut geser tanah dan berat isi tanah yang diperoleh dari data proyek.
- 4. Menghitung beban gempa yang mengacu pada SNI 1726-2019.
- Metode yang digunakan dalam perencanaan yaitu dengan Metode Fellenius dengan menggunakan FK pada program GeoStudio SLOPE/W dan perhitungan manual. Metode Fellenius diperkenalkan pertama oleh Fellenius (1927, 1936) bahwa gaya memiliki sudut kemiringan

paralel dengan dasar irisan FK dihitung dengan keseimbangan momen. Fellenius menganggap gaya yang bekerja disisi kiri kanan sembarang irisan mempunyai resultan nol arah tegak lurus bidang longsor, dengan keseimbangan arah vertikal. Berikut rumus perhitungan nilai FK menggunakan Metode Fellenius:

- Tanpa beban gempa

$$F_s = \frac{\sum [(c'l + \{W\cos a - u.l\}\tan\varphi)]}{\sum W\sin a}$$

- Dengan beban gempa


$$F_s = \frac{\sum [(c'l + \{W\cos a - u.l + Ne\} \tan \varphi)]}{(\sum W\sin a + Te)}$$

- 6. Menghitung stabilitas lereng dengan bantuan program GeoStudio SLOPE/W dan dengan cara manual.
- Jika nilai FK belum memenuhi syarat yaitu nilai FK > 1,5 tanpa beban gempa dan FK > 1,1 dengan beban gempa, maka dilanjutkan dengan perencanaan pekerjaan vegetasi dengan rumput vetiver dan soil nailing.
- 8. Merencanakan metode pelaksanaan vegetasi dengan rumput vetiver dan melakukan perhitungan Rencana Anggaran Biaya (RAB).

3. HASIL DAN PEMBAHASAN

1. Menentukan nilai PGA

Berdasarkan peta hazard gempa pada rsa.ciptakarya.pu.go.id, potensi pada daerah Spillway Bendungan Tugu Kabupaten Trenggalek sebesar 0,4 - 0,5 g. Nilai PGA didapatkan dari aplikasi spectrum respons desain Indonesia tahun 2019 yang mengacu pada SNI 1726;2019 sehingga didapatkan nilai PGA pada Spillway Bendungan Tugu Kabupaten Trenggalek sebesar 0,4648 g.

Gambar 1. Nilai PGA pada Spillway Bendungan Tugu Kabupaten Trenggalek

2. Menemukan Kelas Situs Tanah

Kelas situs tanah ditentukan berdasarkan tabel SNI 8460-2017

Tabel 1. Kelas Situs

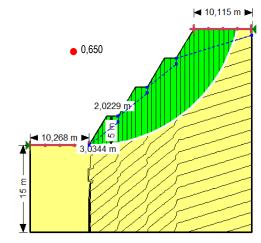
	PGA ≤	PGA =	PGA =	PGA =	$PGA \ge$
Kelas	0,1	0,2	0,3	0,4	0,5
Situs	Ss ≤	Ss = 0.5	Ss =	Sa _ 1 0	Ss≥
	0,25	38 – 0,3	0,75	Ss = 1,0	1,25
SA	0.8	0.8	0.8	0.8	0.8
SB	0.9	0.9	0.9	0.9	0.9
SC	1.3	1.3	1.2	1.2	1.2
SD	1.6	1.4	1.2	1.1	1
SE	2.4	1.7	1.3	1.1	0.9
SF			SS ^(a)		

Sumber: SNI 8460-2017

Pada tabel diatas digunakan PGA \geq 0,5 karena nilai potensi gempa pada wilayah Trenggalek yaitu sebesar 0,4648 g. Untuk kelas situs dipilih tanah lunak (SC) karena tanah di lokasi termasuk tanah keras.

Perhitungan koefisien seismic horizontal (k_h) dapat dihitung dengan perhitungan berikut ini :

Mencari nilai PGAM

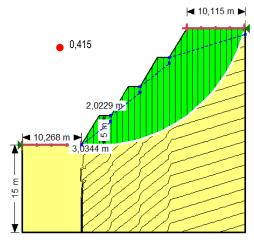

$$PGA_{M} = F_{PGA} \times PGA$$

= 1,2 x 0,4648
= 0,5578 g

- Mencari nilai kh

kh =
$$0.5 \times \frac{PGA_M}{g}$$

= $0.5 \times \frac{0.5578}{g}$
= 0.2789 g


3. Stabilitas lereng kondisi eksisting

Pada kondisi eksisting lereng ini akan dilakukan analisis dengan menggunakan program GeoStudio SLOPE/W dan juga perhitungan manaul. Analisis stabilitas dengan perhitungan manual dihitung menggunakan Metode Fellenius.

Gambar 2. Nilai FK lereng eksisting tanpa beban gempa. Dari hasil perhitungan program diperoleh nilai FK tanpa beban gempa 0,650 yang berarti kurang dari nilai FK ijin FK

beban gempa 0,650 yang berarti kurang dari nilai FK ijin FK > 1,5 dengan jari-jari bidang longsor pada kondisi kritis 25,86.

Gambar 3. Nilai FK lereng eksisting dengan beban gempa.

Dari hasil perhitungan program diperoleh nilai FK tanpa beban gempa 0,415 yang berarti kurang dari nilai FK gempa ijin FK > 1,1, sehingga lereng eksisting tanah masih tergolong tidak stabil dan diperlukan perkuatan untuk menstabilkan.

Tabel 2. Perhitungan manual tanpa beban gempa

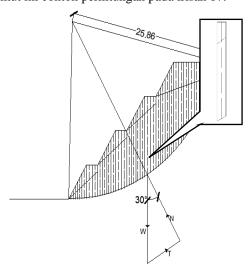

Irisan	Wn	αn	Wn	Wn	u.l	FK
Hisan	(kN/m)	(°)	sinan	cosan	u.i	FK
1	8,817	0	0,000	8,817	2,283	
2	26,268	1	0,458	26,264	6,754	_
3	43,406	3	2,272	43,346	10,993	_
4	60,231	5	5,249	60,001	15,125	_
5	90,323	7	11,008	89,650	26,371	0,527
6	87,782	9	13,732	86,701	33,176	_
7	72,502	11	13,834	71,170	36,758	_
8	83,269	12	17,313	81,450	40,365	_
9	102,818	14	24,874	99,764	43,880	_

Irisan	Wn	αn	Wn	Wn	u.l	FK
II ISan	(kN/m)	(°)	sinan	cosan	u.i	FK
10	117,465	16	32,378	112,915	47,300	
11	163,181	18	50,426	155,194	68,253	
12	156,597	20	53,559	147,153	73,985	
13	121,385	22	45,472	112,546	67,194	
14	134,297	24	54,624	122,687	70,334	
15	146,797	26	64,351	131,940	73,439	
16	158,863	28	74,582	140,268	76,473	
17	214,169	30	107,085	185,476	106,595	
18	202,338	33	110,201	169,695	111,754	
19	152,303	35	87,357	124,759	94,535	
20	161,987	37	97,486	129,368	94,037	
21	171,046	40	109,946	131,029	93,291	•
22	179,423	42	120,057	133,337	92,249	•
23	206,289	44	143,300	148,392	105,434	
24	191,557	47	140,096	130,641	102,768	
25	175,259	50	134,256	112,654	99,214	
26	157,089	53	125,457	94,538	94,164	
27	136,599	57	114,561	74,397	87,014	
28	113,091	60	97,940	56,545	76,431	
29	85,351	64	76,713	37,415	59,565	
30	50,835	69	47,458	18,218	28,517	
31	38,639	75	37,323	10,001	0,000	
			2013,368	3046,333	1938,252	

Tabel 3. Perhitungan manual dengan beban gempa

Irisan	Wn	Wn	u.l	Te	Ne	FK
Irisan	sinan	cosan	u.1	ie ne		ГK
1	0,000	8,817	2,283	0,000	2,459	
2	0,458	26,264	6,754	0,128	7,324	-
3	2,272	43,346	10,993	0,634	12,088	-
4	5,249	60,001	15,125	1,464	16,733	-
5	11,008	89,650	26,371	3,070	25,001	-
6	13,732	86,701	33,176	3,830	24,179	-
7	13,834	71,170	36,758	3,858	19,848	-
8	17,313	81,450	40,365	4,828	22,715	-
9	24,874	99,764	43,880	6,937	27,822	-
10	32,378	112,915	47,300	9,030	31,490	-
11	50,426	155,194	68,253	14,063	43,280	-
12	53,559	147,153	73,985	14,937	41,038	-
13	45,472	112,546	67,194	12,681	31,387	-
14	54,624	122,687	70,334	15,233	34,215	-
15	64,351	131,940	73,439	17,946	36,795	-
16	74,582	140,268	76,473	20,799	39,118	0,522
17	107,085	185,476	106,595	29,864	51,726	-
18	110,201	169,695	111,754	30,733	47,325	-
19	87,357	124,759	94,535	24,362	34,793	-
20	97,486	129,368	94,037	27,187	36,078	-
21	109,946	131,029	93,291	30,662	36,541	-
22	120,057	133,337	92,249	33,482	37,185	-
23	143,300	148,392	105,434	39,964	41,384	-
24	140,096	130,641	102,768	39,070	36,433	-
25	134,256	112,654	99,214	37,441	31,417	-
26	125,457	94,538	94,164	34,987	26,365	-
27	114,561	74,397	87,014	31,949	20,748	-
28	97,940	56,545	76,431	27,313	15,769	-
29	76,713	37,415	59,565	21,394	10,434	-
30	47,458	18,218	28,517	13,235	5,081	-
31	37,323	10,001	0,000	10,409	2,789	-
	2013,368	3046,333	1938,252	561.488	849.561	

Adapun langkah perhitungan stabilitas lereng menggunakan Metode Fellenius adalah sebagai berikut :



Gambar 4. Gambar Irisan ke-17 Bidang Longsor

- Menggambar geometri lereng dengan jari-jari kelongsoran sebesar 25,86 meter dengan membagi kelongsoran menjadi 31 irisan.
- 2) Menghitung luas setiap irisan

-
$$A_{17}$$
 = $\frac{(a+b)x t}{2}$
= $\frac{(11,7959+11,1679)x 1,0115}{2}$
= $11,596 \text{ m}^2$

 Menghitug berat isian yang merupakan hasil perkalian dari luas setiap irisan (A) dengan berat isi tanah (γ). Berikut ini contoh perhitungan pada irisan 17.

Gambar 5. Irisan no. 17

W =
$$A \cdot \gamma$$

= 11,596 x 18,47
= 214,169 kN

4) Menentukan sudut bidang longsor dengan arah gaya berat masing masing irisan. Sudut bidang longsor pada irisan 17 sebesar 30° 5) Menghitung beban berat komponen tangensial bidang longsor:

T = W .
$$\sin \alpha$$

= 214,169 x $\sin 30^{\circ}$
= 107,085 kN

6) Menghitung beban berat vertical pada dasar bidang irisan :

N = W .
$$\cos \alpha$$

= 214,169 x $\cos 30^{\circ}$
= 185,476 kN

 Menghitung besar tekanan air pori (u) yang merupakan hasil kali dari berat isi air (γ_w) dan ordinat tekanan air pori (h_w) yang panjangnya 9,272 m.

$$\begin{array}{ll} u & = \gamma_{\rm w.} \, h_{\rm w} \\ & = 9.81 \, x \, 9.272 \\ & = 90.959 \, kN/m^2 \end{array}$$

8) Menghitung gaya akibat tekanan air pori (U) yang merupakan hasil kali dari tekanan air pori (u) dan panjang garis longsor (l) yang panjangnya 1,1719 m.

9) Semua prosedur di atas diulang pada semua irisan hingga membentuk bidang longsor. Lalu nilai FK tanpa beban gempa dihitung menggunakan Metode Fellenius sebagai berikut:

FK
$$= \frac{\sum [(c'l + \{W \cos a - u.l\} tan \varphi)]}{\sum W \sin a}$$
$$= \frac{1061,863}{2013,368}$$
$$= 0.527$$

10)Mencari faktor keamanan lereng dengan penambahan beban gempa dengan perhitungan manual seperti di bawah ini:

$$FK_{gempa} = \frac{\sum [(c'l + \{W\cos a - u.l + Ne\} tan\varphi)]}{(\sum W\sin a + Te)}$$

Dengan nilai Ne dan Te dihitung:

$$\begin{array}{ll} \text{Ne} & = k_h \text{ . Wtotal } \cos \alpha \\ & = 0,27888 \text{ . } 185,476 \\ & = 51,726 \text{ kN} \\ \text{Te} & = k_h \text{ . Wtotal } \sin \alpha \\ & = 0,27888 \text{ . } 107,085 \\ & = 29,864 \text{ kN} \end{array}$$

Sehingga dihitung FK dengan beban gempa:

$$\begin{aligned} FK_{gempa} &= \frac{\Sigma[(c'1 + \{W\cos a - u.l + Ne\} \tan \phi)]}{(\Sigma W \sin a + Te)} \\ FK_{gempa} &= \frac{1344,969}{2574,856} \\ FK_{gempa} &= 0,522 \end{aligned}$$

Setelah melakukan perhitungan stabilitas lereng menggunakan Metode Fellenius, maka didapatkan hasil perhitungan sebagai berikut:

Tabel 4. Hasil perhitungan FK lereng eksisting

	Manual			studio PE/W
FK (Faktor	Tanpa	Dengan	Tanpa	Dengan
Keamanan)	Beban	Beban	Beban	Beban
	Gempa	Gempa	Gempa	Gempa
-	0,527	0,522	0,650	0,415

Sumber: Hasil Perhitungan, 2023.

4. Redesign Lereng dan Penanaman Rumput Vetiver

Analisis untuk percobaan *redesign* ini menggunakan kemiringan lereng 0,8 : 0,5 dan dikerjakan menggunakan beberapa parameter tanah yang berbeda dari analisis stabilitas lereng diatas. Untuk mengetahui nilai FK lereng dengan nilai kohesi dan sudut geser dalam yang berbedabeda, maka dianalisis menggunakan GeoStudio Slope/W pada kondisi lereng yang sudah dilakukan *redesign*.

Tabel 5. Parameter *redesign* sampel tanah 1

Parameter	Nilai	Satuan
Kohesi Efektif (c')	39,55	kPa
Sudut Geser Dalam Efektif (φ')	35,34	0
Berat Isi Tanah (γ)	18,47	kN/m ³

Tabel 6. Hasil perhitungan redesign dengan sampel tanah 1

			C	
Jenis	FK	FK ijin	EV.	FK_{bgempa}
Lereng	I'IX	I'K IJIII	FK_{bgempa}	Ijin
Lereng	0,898	1,5	0,593	1,1
Bertingkat	Tidak N	/lemenuhi	Tidak N	/lemenuhi

Tabel 7. Parameter redesign sampel tanah 2

Parameter	Nilai	Satuan
Kohesi Efektif (c')	31,89	kPa
Sudut Geser Dalam Efektif (φ')	17,05	0
Berat Isi Tanah (γ)	18,47	kN/m ³

Tabel 8. Hasil perhitungan redesign dengan sampel tanah 2

Jenis	FK	FK ijin	EV.	FK_{bgempa}
Lereng	TIX	r K ijiii	FK_{bgempa}	Ijin
Lereng	0,895	1,5	0,591	1,1
Bertingkat	Tidak M	Iemenuhi	Tidak M	emenuhi

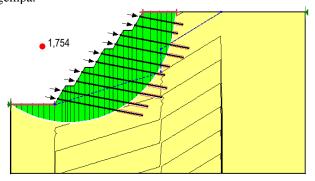
Tabel 9. Parameter *redesign* sampel tanah 3

Parameter	Nilai	Satuan
Kohesi Efektif (c')	29,58	kPa
Sudut Geser Dalam Efektif (φ')	11,90	0
Berat Isi Tanah (γ)	18,47	kN/m ³

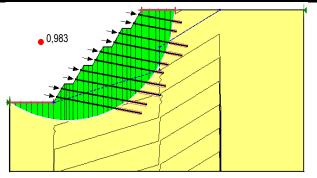
Tabel 10. Hasil perhitungan redesign dengan sampel tanah 3

Jenis Lereng	FK	FK ijin	FK_{bgempa}	FK _{bgempa} Ijin
Lereng	0,899	1,5	0,594	1,1
Bertingkat	Tidak M	Iemenuhi	Tidak M	emenuhi

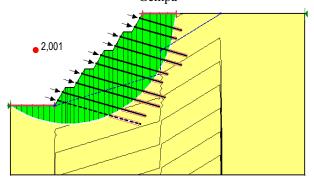
Dari tabel diatas didapatkan hasil bahwa tidak ada nilai FK yang memenuhi ketentuan FK > 1,5 maupun FK > 1,1. Maka akan dilakukan pekerjaan tambahan untuk menstabilkan lereng, yaitu dengan memberi tambahan *soil nailing* pada lereng yang akan dilakukan pekerjaan. Untuk pekerjaan *soil nailing* digunakan parameter tanah dari sampel 3 karena memiliki nilai FK lebih tinggi daripada parameter sampel tanah 1 dan sampel tanah 2.

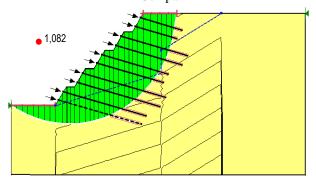

5. Penambahan Soil Nailing

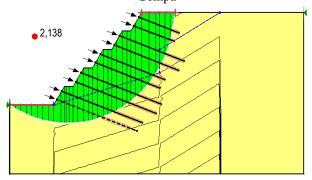
Pekerjaan *soil nailing* akan dihitung menggunakan GeoStudio SLOPE/W dan menguji coba dengan tiga sudut kemiringan *nail* yang berbeda, yaitu kemiringan 10°, 15°, 20°, dan 30°.

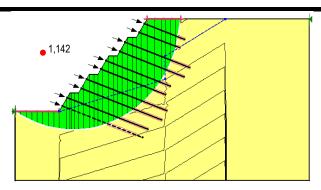

Tabel 11. Spesifikasi Nail

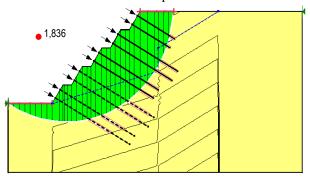
Input	Nilai	Satuan
	10	m
Length	16	m
	20	m
Inclination	20	0
Pullout Resistance	100	kPa
Bond Diameter	0,31831	m
FS	1,5	
Nail Spacing	1	m
Tensile Capacity	471	kN
Shear Force	0	kN
Sheat Reduction Factor	1	

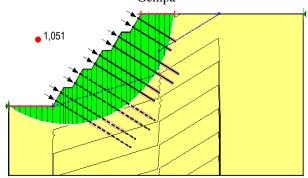

Hasil analisis menggunakan program *Geostudio* pada lereng yang diperkuat dengan *soil nailing* yang menghasilkan nilai FK tanpa beban gempa dan nilai FK dengan beban gempa.


Gambar 6. Sudut Pemasangan *Nail* 10° Tanpa Beban Gempa


Gambar 7. Sudut Pemasangan *Nail* 15° Dengan Beban Gempa


Gambar 8. Sudut Pemasangan *Nail* 15° Tanpa Beban Gempa


Gambar 9. Sudut Pemasangan *Nail* 15° Dengan Beban Gempa


Gambar 10. Sudut Pemasangan $Nail~20^{\circ}$ Tanpa Beban Gempa

Gambar 11. Sudut Pemasangan *Nail* 20° Dengan Beban Gempa

Gambar 12. Sudut Pemasangan *Nail* 30° Tanpa Beban Gempa

Gambar 13. Sudut Pemasangan *Nail* 30° Dengan Beban Gempa

Rekapitulasi hasil analisis perhitungan *Geostudio* menggunakan perkuatan *soil nailing* tanpa atau dengan beban gempa bias dilihat pada tabel berikut :

Tabel 12. Rekapitulasi hasil pemasangan Soil Nailing

Sudut Pemasangan Nail (°)	SF Soil Nailing Tanpa Beban Gempa	SF Soil Nailing Dengan Beban Gempa	Hasil
10	1,754 0,983	0.083	Tidak
10		0,963	Memenuhi
15	2,001	1,082	Tidak
			Memenuhi

20	2,138	1,142	Memenuhi
20	1,836	1,051	Tidak
30	1,630		Memenuhi

Dapat disimpulkan bahwa didapatkan hasil yang sesuai dengan ketentuan FK yaitu pada sudut 20°. Sudut 20° dipilih sebagai acuan untuk pemasangan *soil nailing* karena memiliki FK yang sesuai yaitu FK > 1,5 dan FK_{gempa} > 1,1.

6. Metode Pelaksanaan

Setelah merencanakan stabilitas lereng dengan rumput vetiver, lalu menambahkan *soil nailing*. Selanjutnya dilakukan pekerjaan pelaksanaan. Berikut adalah metode pelaksanaan:

- 1) Pekerjaan pembersihan area yang akan dilakukan pekerjaan stabilitas.
- 2) Melakukan pekerjaan penggalian tanah menggunakan excavator kemudian diangkut ke dump truck dan kemudian dibuang ke area pembuangan (*disposal area*).
- 3) Pekerjaan penggalian dilakukan per-layer untuk mengurangi resiko longsor.
- 4) Pemadatan tanah dasar dibawah lereng yang akan diberi perkuatan.
- 5) Proses penanaman rumput vetiver, penimbunan dengan tanah dan pemupukan.
- 6) Proses pemeliharaan rumput vetiver dengan tangki air 1 hari 1 kali selama 2 minggu, selanjutnya 2 hari 1 kali selama 2 minggu, dan 2 kali 1 minggu selama 8 minggu.
- 7) Pengeboran lereng dilakukan dengan sudut yang sudah ditentukan dengan system "wash boring". Posisi masingmasing nail sesuai dengan gambar rencana
- 8) Pemasangan *nail* pada lubang bor.
- 9) Untuk menjamin *nail* terpasang pada posisi tengahtengah lubang, maka dipasang *centralizer* atau penengah.
- 10) Proses *grouting* dilakukan dengan campuran air dan semen yang menghasilkan mortar mutu K225. Setelah proses *grouting* selesai dilakukan biasanya pada pekerjaan tertentu dilanjutkan dengan proses *shotcrete*.
- 11)Proses *finishing* merupakan tahap terakhir dengan pemasangan plat penguat misalnya dengan ukuran 150x150x10 mm serta pengencangan baut pada ujung *nail*. Pemasangan plat biasanya disesuaikan dengan tujuan perkuatan lereng.

7. Rencana Anggaran Biaya (RAB)

Pada perhitungan Rencana Anggaran Biaya (RAB), dengan HSD Kabupaten Trenggalek tahun 2020. Biaya yang diperlukan untuk perkuatan lereng menggunakan rumput vetiver dan penambahan *soil nailing* senilai Rp 2.978.041.000,-. Berikut adalah RAB perkuatan lereng dengan rumput vetiver dan penambahan *soil nailing*.

	Tabel 13. Rencana Anggaran Biaya								
No.	Jenis Pekerjaan	Volume	Satuan	Harga Satuan (Rp.)	Jumlah Harga (Rp.)				
1	Pek. Galian	566,838	m^3	Rp 43.611,-	Rp 24.720.586,-				
2	Pek. Vetiver	582,849	m^2	Rp 89.477,-	Rp 52.151.406,-				
3	Pek. Pemeliharaan (6 bulan)	180	hari	Rp 328.907,-	Rp 59.185.335,-				
4	Pek. Soil Nailing	1228,784	m	Rp 2.312.842,-	Rp 2.841.983.562,-				
				TOTAL	Rp 2.978.040.889,-				
				DIBULATKAN	Rp 2.978.041.000,-				

4. KESIMPULAN

Berdasarkan hasil perhitungan Analisis Perbaikan Stabilitas Lereng Dengan Metode Vegetasi Di Area Proyek Spillway Bendungan Tugu Kabupaten Trenggalek pada pembahasan diatas, maka kesimpulan yang diperoleh adalah:

- Hasil dari analisis stabilitas lereng dengan menggunakan Metode Fellenius secara manual maupun Program GeoStudio dengan kemiringan 1,0:0,6 menunjukkan bahwa lereng dalam kondisi tidak stabil karena faktor keamanan kurang dari faktor izin, dengan hasil sebagai berikut:
 - a. Perhitungan Manual Metode Fellenius = 0,527 (tanpa beban gempa) dan 0,522 (dengan beban gempa)
 - b. Program GeoStudio = 0,650 (tanpa beban gempa) dan 0,415 (dengan beban gempa)
- 2) Dilakukan *redesign* pada lereng dengan kemiringan 0,8-0,6 sebelum diperkuat dengan rumput vetiver. Hasil dari penambahan perkuatan vetiver didapatkan FK:
 - a. Dengan sampel 1 kedalaman akar ± 50 cm dengan jarak penanaman ± 2 m = 0,898 (tanpa beban gempa) dan 0,593 (dengan beban gempa)
 - b. Dengan sampel 2 kedalaman akar ±50cm dengan jarak penanaman rapat 20 cm = 0,895 (tanpa beban gempa) dan 0,591 (dengan beban gempa)
 - c. Dengan sampel 3 kedalaman akar ±200cm dengan jarak menanaman ±50-100cm = 0,899 (tanpa beban gempa) dan 0,594 (dengan beban gempa)

Dilakukan penambahan perkuatan soil nailing karena perkuatan vetiver masih belum cukup untuk meningkatkan nilai FK yang sesuai. Hasil dari penambahan perkuatan nailing soil dihitung menggunakan Program GeoStudio dengan hasil sebagai berikut:

- a. Sudut pemasangan $nail\ 10^{\circ} = 1,754$ (tanpa beban gempa) dan 0,983 (dengan beban gempa)
- b. Sudut pemasangan $nail\ 15^\circ=2,001$ (tanpa beban gempa) dan 1,082 (dengan beban gempa)
- c. Sudut pemasangan $nail\ 20^{\circ} = 2,138$ (tanpa beban gempa) dan 1,142 (dengan beban gempa)

- d. Sudut pemasangan *nail* $30^{\circ} = 1,836$ (tanpa beban gempa) dan 1,051 (dengan beban gempa)
- Dari percobaan pemasangan *soil nailing* dengan empat sudut yang berbeda, didapatkan hasil yang sesuai dengan ketentuan FK yaitu sudut 20°. Sehingga sudut 20° dipilih sebagai acuan untuk pemasangan *soil nailing*.
- 3) Metode pelaksanaan stabilitas lereng diawali dengan melakukan redesign lereng, penambahan rumput vetiver, lalu penambahan soil nailing. Penambahan soil nailing dilakukan karena penambahan rumput vetiver tidak cukup efektif sebagai sarana stabilitas lereng tersebut.
- 4) Rencana anggaran biaya yang didapatkan dari pekerjaan stabilitas dengan perkuatan vetiver dan *soil nailing* adalah sebesar Rp 384.229.000

DAFTAR PUSTAKA

- [1] Bowles, J.E. 1989. Sifat-Sifat Fisis Dan Geoteknis Tanah (Mekanika Tanah). Jakarta : Erlangga.
- [2] Gabriella, Violetta. Analisa Kestabilan Lereng Dengan Metode Fellenius, Jurnal Sipil Statik. 2014.
- [3] Hardiyatmo, H.C. 2010. *Mekanika Tanah II*. Yogyakarta: Gadjah Mada University Press
- [4] M. Das, Braja. 1995. Mekanika Tanah (Prinsip-Prinsip Rekayasa Geoteknis). Jakarta : Erlangga.