PID-Controlled Pyrolysis of Medical Mask Waste for Enhanced Alternative Fuel Production
DOI:
https://doi.org/10.33795/jtkl.v9i2.8685Keywords:
medical masks, PID controller, pyrolysis, tuning, waste-to-energyAbstract
The escalating volume of plastic-based medical mask waste, exacerbated by the COVID-19 pandemic, presents an urgent environmental challenge that can be addressed through sustainable valorization. This study proposes a novel, integrated approach by evaluating the effectiveness of a Proportional-Integral-Derivative (PID) temperature control system to minimize thermal fluctuations critical for consistent product selectivity of the pyrolysis process. A rigorous comparative evaluation of the Cohen-Coon (CC) and Internal Model Control (IMC) tuning methods demonstrated IMC's superiority, achieving a significantly shorter settling time of 114 minutes and a low overshoot of 0.45, ensuring stable isothermal operation. Pyrolysis process conducted under this optimized control condition (at 250°C for 5 hours) resulted in high liquid fuel yields and improved physical characteristics (density 785.8 kg/m3, viscosity 1.546 cSt). Gas Chromatography-Flame Ionization Detector (GC-FID) confirmed that the liquid fuel exhibits hydrocarbon fractions highly similar to commercial kerosene and diesel. These findings underscore that the precision of the IMC-PID method is the key technical enabler for enhancing both process stability and the subsequent quality and yield of valuable liquid fuel derived from medical mask waste.
References
World Health Organization (WHO), Shortage of personal protective equipment endangering health workers worldwide, 2020. https://www.who.int/news/item/03-03-2020-shortage-of-personal-protective-equipment-endangering-health-workers-worldwide (accessed Sep. 02, 2025).
R. Al-Tohamy, S. S. Ali1, M. Zhang, T. Elsamahy, E. A. Abdelkarim, H. Jiao, S. Sun, J. Sun, Environmental and Human Health Impact of Disposable Face Masks During the COVID-19 Pandemic: Wood-Feeding Termites as a Model for Plastic Biodegradation, Appl. Biochem. Biotechnol., vol. 195, no. 3, pp. 2093–2113, 2023.
R. Ajaj, R. Al Dweik, S. A. S. Ali, M. H. Stietiya, Understanding the environmental impacts of facemasks: a review on the facemask industry and existing life cycle assessment studies, Sustain. Environ. Res., vol. 33, no. 1, pp. 1–19, 2023.
A. A. Bogush, I. Kourtchev, Disposable surgical/medical face masks and filtering face pieces: Source of microplastics and chemical additives in the environment, Environ. Pollut., vol. 348, p. 123792, 2024.
R. K. Ganguly, S. K. Chakraborty, Plastic waste management during and post Covid19 pandemic: Challenges and strategies towards circular economy, Heliyon, vol. 10, no. 4, p. e25613, 2024.
M. S. Haque, S. Sharif, A. Masnoon, E. Rashid, SARS-CoV-2 pandemic-induced PPE and single-use plastic waste generation scenario, Waste Manag. Res., vol. 39, pp. 3–17, 2021.
T. Teymourian, T. Teymoorian, E. Kowsari, S. Ramakrishna, Challenges, Strategies, and Recommendations for the Huge Surge in Plastic and Medical Waste during the Global COVID-19 Pandemic with Circular Economy Approach, Mater. Circ. Econ., vol. 3, no. 1, pp. 1–14, 2021.
G. A. Idowu, A. O. Olalemi, A. F. Aiyesanmi, Environmental impacts of covid-19 pandemic: Release of microplastics, organic contaminants and trace metals from face masks under ambient environmental conditions, Environ. Res., vol. 217, p. 114956, 2023.
M. K. Ghasemi, R. B. M. Yusuff, Advantages and disadvantages of healthcare waste treatment and disposal alternatives: Malaysian scenario, Polish J. Environ. Stud., vol. 25, no. 1, pp. 17–25, 2016.
H. Emad, K. Ramzy, T. M. Ismail, Environmental Impact of Medical Waste Incineration - Literature Review, Int. J. Sci. Res. Sci. Eng. Technol., vol. 10, no. 6, pp. 103–125, 2023.
C. Thiagarajan, D. Yuvarajan, M. Channappagoudra, D. Bhanot, V. J. Upadhye, S. Choudhury, K. K. Shukla, Results in Chemistry Advancing sustainable medical waste management : The role of pyrolysis in resource recovery and environmental protection, Results Chem., vol. 17, p. 102639, 2025.
M. M. Hasan, R. Haque, M. I. Jahirul, M. G. Rasul, Pyrolysis of plastic waste for sustainable energy Recovery: Technological advancements and environmental impacts, Energy Convers. Manag., vol. 326, p. 119511, 2025.
C. Park, H. Choi, K. A. Lin, E. E. Kwon, J. Lee, COVID-19 mask waste to energy via thermochemical pathway : Effect of Co-Feeding food waste, Energy, vol. 230, p. 120876, 2021.
N. Zhao, S. S. Low, C. L. Law, T. Wu, C. H. Pang, Co-pyrolysis of polymers: Recent advances, challenges and perspectives, Fuel Process. Technol., vol. 274, p. 108239, 2025.
I. Ahmad, M. I. Khan, H. Khan, M. Ishaq, K. Gul, W. Ahmad, Pyrolysis Study of Polypropylene and Polyethylene Into Premium Oil Products, Int. J. Green Energy, vol. 12, no. 7, pp. 663–671, 2015.
E. Hartulistiyoso, F. A. P. A. G. Sigiro, M. Yulianto, Temperature Distribution of the Plastics Pyrolysis Process to Produce Fuel at Temperature distribution of the plastics Pyrolysis process to produce fuel at 450°C, Procedia Environ. Sci., vol. 28, pp. 234–241, 2015.
A. W. Gin, H. Hassan, M. A. Ahmad, B. H. Hameed, A. T. M. Din, Recent progress on catalytic co-pyrolysis of plastic waste and lignocellulosic biomass to liquid fuel: The influence of technical and reaction kinetic parameters, Arab. J. Chem., vol. 14, no. 4, p. 103035, 2021.
K. Awodun, Y. He, C. Wu, S. M. Soltani, Catalytic pyrolysis of bio-waste in synthesis of value-added products: A systematic review, Fuel Process. Technol., vol. 275, p. 108258, 2025.
B. Muharto, F. R. Saputro, W. Prabowo, T. Anggoro, A. B. Adiprabowo, I. Masfuri, B. B. Irawan, Pyrolysis Process Control : Temperature Control Design and Application for Optimum Process Operation, Int. J. Electr. Comput. Eng., vol. 14, no. 2, pp. 1473–1485, 2024.
A. E. Taşören, Design and Realization of Online Auto Tuning PID Controller Based on Cohen-Coon Method, Eur. J. Sci. Technol., vol. 24, pp. 235–239, 2021.
K. Divakar, M. P. Kumar, C. Dhanamjayulu, G. Gokulakrishnan, A Technical Review on IMC-PID Design for Integrating Process with Dead Time, IEEE Access, vol. 12, pp. 124845–124870, 2024.
L. Y. Liu, Design of internal model controller based on robustness/ performance tradeoff tuning for robot arm, Discov. Appl. Sci., vol. 7, no. 722, 2025.
H. Hardjono, C. E. Lusiani, E. N. Dewi, P. R. Aprilia, Z. F. Rana, Design of pyrolysis equipment for the decomposition of medical gloves waste into fuel oil, AIP Conference Proceeding, vol. 2531, p. 020005, 2023.
Y. Xie, Integrated Plant And Control Design For Vehicle - Environment Interaction, Ph.D. dissertation, University of Illinois, USA, 2013.
E. A. Joseph, O. O. Olaiya, Cohen-coon PID Tuning Method; A Better Option to Ziegler Nichols-PID Tuning Method, International Journal of Recent Engineering Research and Development, vol. 2, no. 11, pp. 141–145, 2017.
D. B. S. Kumar, R. P. Sree, Tuning of IMC Based PID Controllers for Integrating Systems with Time Delay, ISA Trans., vol. 63, pp. 242–255, 2016.
L. A. Brujeni, J. M. Lee, S. L. Shah, Dynamic Tuning of PI-Controllers based on Model-Free Reinforcement Learning Methods, International Conference on Control, Automation and Systems, Gyeonggi-do, Korea, 2010.
P. Talwar, M. A. Agudelo, S. Nanda, Pyrolysis Process, Reactors, Products, and Applications: A Review, Energies, vol. 18, no. 11, p. 2979, 2025.
M. M. Sari, T. Inoue, V. C. Salsabilla, I. Y. Septiariva, R. Mulyana, W. Prayogo, N. N. Arifianingsih, S. Suhardono, I. W. K. Suryawan, Transforming disposable masks to sustainable gasoline-like fuel via pyrolysis, Environ. Adv., vol. 15, p. 100466, 2024.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Cucuk Evi Lusiani, Ernia Novika Dewi, Hardjono Hardjono, Eko Naryono, Nahdiyah Nur Febriani, Istiqomah Hanifa Nurlaila

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.




