Main Article Content


Earthquake is a natural disaster that often occurs in Indonesia, so buildings must be designed according to earthquake regulations SNI 1726:2019 Seismic. The height of the building is based on the maximum limit according to SNI 1726:2012 table 9 and article Based on these limitations, a size of 12 floors (48 meters) and eight floors (45.9 meters) in this study. Previous research has shown that ground motions were evaluated using the response-based damage model proposed by (Karsaz & Razavi Tosee, 2018). Then, the structures were rehabilitated with different bracing systems (eccentric and concentric inverted-V) and, again, their damage under earthquakes was evaluated and compared with those of moment resisting frames. The pushover analysis results while mid and high-rise buildings with Lateral shear force CBF is 0.91 %, whereas EBF is 2.77 %, compared to MRF. Therefore, CBF has a higher elastic stiffness than EBF. The bracing increases displacements for CBF by 70 % and EBF by 77% compared to MRF because EBF bracing decreases the displacements of the structural floors considerably; therefore, it can be said that the EBF bracings provide more lateral hardness for steel structures in comparison to the CBF bracings. The maximum inter-story drift  CBF is 85%, while EBF is 86%  for e = 0.50 m. Therefore, EBF is more malleable than CBF; the weight difference is 1.530%for CBF and 3.20 %for EBF compared to MRF. Therefore, EBF has a higher weight than CBF, the weight of the intended frames. There is little difference in the importance of the planned structures but the difference between their seismic performances under nonlinear static and dynamic. Using response-based damage models could be suitable for estimating the vulnerability of steel structures rehabilitated with a bracing system. 



Comparison, (CBF)Concentric Bracing Frame, (EBF) Eccentric Bracing Frames, Earthquake Resistant

Article Details


  3. A. M. Nur, “Gempa Bumi, Tsunami Dan Mitigasinya,” Gempa Bumi, Tsunami Dan Mitigasinya, vol. 7, no. 1, 2010, doi: 10.15294/jg.v7i1.92.
  4. J. Shen, O. Seker, B. Akbas, P. Seker, S. Momenzadeh, and M. Faytarouni, “Seismic performance of concentrically braced frames with and without brace buckling,” Eng. Struct., vol. 141, pp. 461–481, 2017, doi: 10.1016/j.engstruct.2017.03.043.
  5. S. Pramono, F. Habibah, A. Furqon, O. Ardian, and K. Audi, “Preliminary Engineering Seismology Report From Strong Motion Records For Malang Earthquake-East Java , Indonesia,” Indonesia. Agency Meteorol., pp. 1–16, 2021.
  6. N. F. Musthafa and A. Hindaryanto, “Bangunan Tinggi Dan Bencana Gempa Bumi,” J. Econ. Bus. Eng., vol. 3, no. 1, pp. 50–60, 2021, doi: 10.32500/jebe.v3i1.2046.
  7. M. H. Zulfiar and M. I. I. Zai, “Penilaian Kerentanan Bangunan Terhadap Gempa Bumi pada Gedung Perkuliahan Berlantai Tinggi di Yogyakarta,” Bull. Civ. Eng., vol. 1, no. 2, pp. 1–8, 2021, doi: 10.18196/bce.v1i2.11075.
  8. Z. Khan, B. Narayana, and S. A. Raz, "Effect of Concentric and Eccentric Type of Bracings on Performance-Based Seismic Analysis of Rc Building," Int. J. Res. Eng. Technol., vol. 04, no. 06, pp. 278–283, 2015, doi: 10.15623/ijret.2015.0406046.
  9. M. Sukrawa, I. B. Dharma Giri, I. P. Deskarta, and M. H. Prayoga, “Perkuatan Seismik Struktur Rangka Beton Bertulang Menggunakan Breising Baja Tipe X Dan V Terbalik,” J. Spektran, vol. 4, no. 2, 2016, doi: 10.24843/spektran.2016.v04.i02.p10.
  10. C. Renaldi, S. Setiawan, and E. Tanojo, “Perbandingan Kinerja Struktur Baja Rangka Terbreis Konsentris Khusus Berbentuk Multistory X Dan Zipper V Terbalik Pada Bangunan 12 dan 18 Lantai,” Tek. Sipil, vol. 1, no. 1, pp. 36–43, 2019, [Online]. Available:
  11. Z. Tafheem and S. Khusru, “Structural behavior of steel building with concentric and eccentric bracing: A comparative study Steel Structure View project Influence of opening parameters on the seismic performance of RC shear walls View project,” vol. 4, no. August, pp. 12–19, 2013, doi: 10.6088/ijcser.201304010002.
  12. M. A. Rahman, M. Teguh, and F. Saleh, “Comparative study of structural response on multi-story buildings with shear wall and bracing systems,” IOP Conf. Ser. Earth Environ. Sci., vol. 933, no. 1, pp. 1–9, 2021, doi: 10.1088/1755-1315/933/1/012009.
  13. L. Susanti and M. Wijaya, “Eccentricity effect on the cyclic response of braced frame type-V,” Civ. Environ. Sci., vol. 005, no. 01, pp. 089–095, 2022, doi 10.21776/ub. license.2022.00501.9.
  14. M. Maizuar and B. Burhanuddin, “Studi Komparasi Perilaku Struktur Sistem Rangka Berpengaku Eksentrik Tipe D Terhadap Sistem Rangka Pemikul Momen,” Teras J., vol. 2, no. 4, pp. 301–309, 2016, doi: 10.29103/tj.v2i4.56.
  15. O. Alshamrani, G. G. Schierle, K. Galal, and D. Vergun, “Optimal bracing type and position to minimize lateral drift in high-rise buildings,” WIT Trans. Built Environ., vol. 106, pp. 155–166, 2009, doi: 10.2495/OP090141.
  16. M. Sukrawa, I. B. D. Giri, and I. M. A. D. Tama, “Kajian Kinerja Struktur Rangka Bresing V-Terbalik Eksentrik dan Konsentrik,” Struktur, vol. 2002, no. KoNTekS 7, pp. 24–26, 2013.
  17. J. Tanijaya, “Structural performance of concentrically and eccentrically braced frame,” IOP Conf. Ser. Earth Environ. Sci., vol. 871, no. 1, pp. 0–8, 2021, doi: 10.1088/1755-1315/871/1/012046.
  18. K. Karsaz and S. V. Razavi Tosee, “A Comparative Study on the Behavior of Steel Moment-Resisting Frames with Different Bracing Systems Based on a Response-Based Damage Index,” Civ. Eng. J., vol. 4, no. 6, p. 1354, 2018, doi: 10.28991/cej-0309178.
  19. G. Coeto, “Stiffness-Based Sizing of Bracing Systems for Tall and Slender Buildings,” WCEE, vol. LISBOA2012, p. 10, 2012.