Optimalisasi Konfigurasi Fasa Vertikal Pada Saluran Udara Tegangan Ekstra Tinggi
DOI:
https://doi.org/10.33795/elposys.v12i1.6848Keywords:
Vertical Phase, Field Intensity, superbundle arragementAbstract
The dangers arising from the 500 kV extra high voltage overhead lines to the surrounding environment can actually be minimized in several ways. One of the methods is to change the configuration of the conductor arrangement. Based on the laws in field theory which state that the magnitude of the field quantity on a charged conductor can differ depending on the distance, area, or volume, an analysis was carried out to understand the effect of the phase arrangement on the electric field intensity under the 500 kV overhead transmission line. The Finite Difference Method uses a numerical approximation to the partial derivative of the differential equation describing the electric field. The use of the Hybrid Tower combines vertical and horizontal designs to achieve a balance between low electric fields and land efficiency. Of the 36 combinations of phase arrangements on transmission lines with a double-circuit vertical configuration, there is a large variation in the resulting field intensity. Information on the phase arrangement that produces the smallest field intensity is very important. The arrangement of 36 (arrangement T1-S1-R1: T2-S2-R2) produces the lowest electric field intensity. Compared with the super bundle arrangement (arrangement R1-S1-T1: R2-S2-T2), there is a decrease in field intensity of up to 45.842%, while compared with the low reactance arrangement (arrangement R1-S1-T1: T2-S2-R2), there is a decrease in field intensity of up to 33.374%.
References
I. Boukabou, D. Rupanetti, N. Kaabouch, and L. Foust, “Electromagnetic Environment Around Overhead Parallel Extra-High-Voltage Transmission Lines for UAS During Powerline Inspection,” 2023 IEEE Symp. Electromagn. Compat. Signal/Power Integrity, EMC+SIPI 2023, pp. 413–418, 2023, doi: 10.1109/EMCSIPI50001.2023.10241534.
E. R. Anagha and H. J. Bahirat, “Effect of High-Voltage Transmission Lines on Nearby Residential Buildings,” Proc. 2024 IEEE 7th Int. Conf. Cond. Assess. Tech. Electr. Syst. CATCON 2024, pp. 82–86, 2024, doi: 10.1109/CATCON60527.2024.10831712.
A. Nawawi, “Dampak Radiasi Listrik Tegangan Tinggi Terhadap Kesehatan Manusia,” Swara Patra Maj. Ilm. PPSDM Migas, vol. 8, no. 1, pp. 93–106, Mar. 2018, Accessed: Mar. 12, 2025. [Online]. Available: https://ejurnal.ppsdmmigas.esdm.go.id/sp/index.php/swarapatra/article/view/20
A. A Zamista, “Perancangan Solar Cell untuk Kebutuhan Energi Listrik pada Kapal Nelayan,” J. Unitek, vol. 10, no. 1, pp. 1–7, 2017, doi: 10.52072/unitek.v10i1.66.
N. Rosyidi AS, E. Supriyadi, and S. Sugianto, “Pengaruh Susunan Konduktor pada SUTET,” Sainstech J. Penelit. Dan Pengkaj. Sains Dan Teknol., vol. 33, no. 4, 2023, doi: 10.37277/stch.v33i4.1747.
E. B. Utoyo, F. Azmi, and Sudarti, “Analisis Dampak Paparan Medan Magnet Extremly Low Frequency (ELF) Oleh SUTET Terhadap Resiko Kanker dan Masalah Reproduksi Pada Manusia,” CERMIN J. Penelit., vol. 7, no. 1, pp. 58–68, 2023.
Miftakhudin, D. Wahjudi, and Watiningsih, “Analisis Pengaruh Kuat Medan Listrik Terhadap Lingkungan Dibawah Transmisi SUTET 500 kV Penghantar Pedan-Pesugihan,” Teodolita Media Komun. Ilm. Dibidang Tek. Vol. 23 No. 2, vol. 23, no. 2, 2022.
R. Benato et al., “Highly efficient overhead line innovative conductors with reduced joule power losses,” 2017 AEIT Int. Annu. Conf. Infrastructures Energy ICT Oppor. Foster. Innov. AEIT 2017, vol. 2017-January, pp. 1–6, Dec. 2017, doi: 10.23919/AEIT.2017.8240504.
S. Liu, A. Liu, D. Zhao, and W. Ye, “Effect of Overhead Transmission Line Arrangement on Energy Losses in Overhead Power Line Ground Wires,” 2024 3rd Int. Conf. Power Syst. Electr. Technol. PSET 2024, pp. 283–288, 2024, doi: 10.1109/PSET62496.2024.10808978.
K. Zhao et al., “A novel FDFD method for electromagnetic simulation based on adaptive grids,” https://doi.org/10.1117/12.2687264, vol. 12773, pp. 144–150, Nov. 2023, doi: 10.1117/12.2687264.
R. Abdelghani, K. Abdellah, and L. Messaouda, “Study of Electrical Field Distribution in the Insulation of High-Voltage Cables,” Lect. Notes Electr. Eng., vol. 682, pp. 723–734, 2021, doi: 10.1007/978-981-15-6403-1_49.
P. Cambareri, C. De Falco, L. Di Rienzo, P. Seri, and G. C. Montanari, “Electric Field Calculation During Voltage Transients in HVDC Cables: Contribution of Polarization Processes,” IEEE Trans. Power Deliv., vol. 37, no. 6, pp. 5425–5432, Dec. 2022, doi: 10.1109/TPWRD.2022.3177567.
X. Bian, J. Cui, Y. Lu, and J. Tan, “Bias electric field distribution analysis based on finite difference method with non-uniform grids for a non-contact tunneling current probe,” https://doi.org/10.1117/12.2512440, vol. 11053, pp. 1085–1091, Mar. 2019, doi: 10.1117/12.2512440.
S. Kumara, Y. V. Serdyuk, and M. Jeroense, “Calculation of Electric Fields in HVDC Cables: Comparison of Different Models,” IEEE Trans. Dielectr. Electr. Insul., vol. 28, no. 3, pp. 1070–1078, Jun. 2021, doi: 10.1109/TDEI.2021.009371.
C. Jörgens and M. Clemens, “Modeling the electric field at interfaces and surfaces in high-voltage cable systems,” COMPEL - Int. J. Comput. Math. Electr. Electron. Eng., vol. 39, no. 5, pp. 1099–1111, Dec. 2020, doi: 10.1108/COMPEL-01-2020-0041/FULL/XML.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Elposys: Jurnal Sistem Kelistrikan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.