Solar Tracking System Pada Panel Surya dengan Metode Optimum Tegangan Menggunakan Mikrokontroler

Authors

  • Kumala Mahda Habsari Politeknik Negeri Madiun
  • Zawatan Arwin Politeknik Negeri Madiun
  • Hanifah Nur Kumala Ningrum Politeknik Negeri Madiun
  • Dimas Nur Prakoso Politeknik Negeri Madiun

Keywords:

solar tracking system, Optimum Voltage Method, Solar Energy Optimization, Energy Conversion Efficiency

Abstract

This study examines the application of a Solar Tracking System on photovoltaic panels using the Optimal Voltage Method controlled by an Arduino Mega 2560 microcontroller. The system is designed to dynamically optimize the panel's position to continuously face the sun, thereby increasing radiation absorption and improving electrical energy conversion efficiency. Testing was conducted by comparing the output voltage of the panel with and without the tracking system. The measurement results showed an average increase of 1.51% in the output voltage when the tracking system was activated. Analysis of solar irradiation data and light intensity further supports the system's effectiveness in maximizing solar energy utilization throughout the day. With the Arduino Mega 2560's ability to process data in real-time and control linear actuators, this system has proven to be effective in enhancing photovoltaic panel performance. This research is expected to lead to significant changes. The innovation made can improve solar energy efficiency, reduce costs, and expand global access to clean energy. Furthermore, this innovation contributes to achieving sustainability goals set by various countries, creating a positive impact on economic growth, job creation, and environmental health. With ongoing technological advancements, the solar tracking system has the potential to play a key role in realizing a more sustainable and environmentally friendly future in the energy sector.

References

J. Sullivan and A. Witayangkurn, “Automatic Estimation of Solar Rooftops and Power Generation from Publicly Available Satellite Imagery through Georeferencing and Large-scale Support,” IEEE Access. 2025, doi: 10.1109/ACCESS.2025.3535817.

P. Rahdan, E. Zeyen, and M. Victoria, “Strategic deployment of solar photovoltaics for achieving self-sufficiency in Europe throughout the energy transition,” 2024, [Online]. Available: http://arxiv.org/abs/2410.19440.

O. Bamisile, C. Acen, D. Cai, Q. Huang, and I. Staffell, “The environmental factors affecting solar photovoltaic output,” Renew. Sustain. Energy Rev., vol. 208, no. October 2024, p. 115073, 2025, doi: 10.1016/j.rser.2024.115073.

“ENVIRONMENTAL FACTORS AND THE PERFORMANCE OF PV,” vol. 6, no. 3, pp. 231–247, 2023, doi: 10.52589/AJENSR-GA3SMDHP.

P. Harcourt, “The Effect of Cloud on the Output Performance of a Solar Module The Effect of Cloud on the Output Performance of a Solar Module,” no. February, 2023.

“Optimasi Solar Tracking System pada PLTS di Lahan Pertanian Menggunakan Polynomial Regression.pdf.” .

S. A. Kalogirou, “Solar Energy Engineering: Processes and Systems,” Sol. Energy Eng. Process. Syst., no. January 2009, pp. 1–885, 2023, doi: 10.1016/C2021-0-02041-1.

S. Dubey, J. N. Sarvaiya, and B. Seshadri, “Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world - A review,” Energy Procedia, vol. 33, pp. 311–321, 2013, doi: 10.1016/j.egypro.2013.05.072.

N. Kuttybay et al., “Assessment of solar tracking systems: A comprehensive review,” Sustain. Energy Technol. Assessments, vol. 68, p. 103879, 2024, doi: https://doi.org/10.1016/j.seta.2024.103879.

J. M. Barrios-Sánchez and E. I. Tlapanco-Ríos, “Dual-Axis Solar Tracking System for Enhanced Photovoltaic Efficiency in Tropical Climates,” Sustain., vol. 17, no. 3, 2025, doi: 10.3390/su17031117.

Y. Prasetyo, B. Triyono, and H. Kusbandono, “Dual Axis Solar tracker Using Astronomic Method Based Smart Relay,” JAREE (Journal Adv. Res. Electr. Eng., vol. 5, no. 1, pp. 28–33, 2021, doi: 10.12962/jaree.v5i1.156.

R. Sadeghi, M. Parenti, S. Memme, M. Fossa, and S. Morchio, “A Review and Comparative Analysis of Solar Tracking Systems,” Energies, vol. 18, no. 10, 2025, doi: 10.3390/en18102553.

Y. Prasetyo, B. Triyono, and A. Choirul Arifin, “Optimalisasi Daya Output Dual Axis Solar tracker Dengan Metode Umbrella System,” J. Geuthèë Penelit. Multidisiplin, vol. 02, no. 02, pp. 267–274, 2019, doi: 10.13140/RG.2.2.14020.86401.

Z. Wang, D. Yu, and Z. Wu, “Real-time machine-learning-based optimization using Input Convex Long Short-Term Memory network,” Appl. Energy, vol. 377, 2025, doi: 10.1016/j.apenergy.2024.124472.

J. V. Santos de Araújo et al., “Solar Tracking Control Algorithm Based on Artificial Intelligence Applied to Large-Scale Bifacial Photovoltaic Power Plants.,” Sensors (Basel)., vol. 24, no. 12, Jun. 2024, doi: 10.3390/s24123890.

V. Kumar, S. Ghosh, N. K. S. Naidu, S. Kamal, R. K. Saket, and S. K. Nagar, “Load voltage-based MPPT technique for standalone PV systems using adaptive step,” Int. J. Electr. Power Energy Syst., vol. 128, p. 106732, 2021, doi: https://doi.org/10.1016/j.ijepes.2020.106732.

A. N. Hidayanti, P. Handayani, and I. Chandra, “Pemanfaatan Metode Single Axis Tracker dan Maximum Power Point Tracker (MPPT) PID untuk Mengoptimalkan Daya Keluaran Panel Surya,” Pros. Ind. Res. Work. Natl. Semin., pp. 149–154, 2019.

Downloads

Published

2025-07-02

How to Cite

Habsari, K. M., Arwin, Z., Ningrum, H. N. K., & Prakoso, D. N. (2025). Solar Tracking System Pada Panel Surya dengan Metode Optimum Tegangan Menggunakan Mikrokontroler. Elposys: Jurnal Sistem Kelistrikan, 12(2), 61–66. Retrieved from https://jurnal.polinema.ac.id/index.php/elposys/article/view/7269