Main Article Content

Abstract

Temperatur sebagai salah satu besaran pokok memainkan peranan penting dalam indikasi berbagai aspek, dari indikator kesehatan mahluk hidup sampai benda tak hidup. Pentingnya peran temperatur membuat keberadaan data akuisisi (DAQ) temperature menjadi cukup krusial. Hingga tak jarang harga temperatur DAQ di pasaran cukup mahal. DAQ temperatur dapat dibuat secara mandiri memanfaatkan sensor termokopel dan platform open source seperti Arduino. Integrasi sensor termokopel dan Arduino membutuhkan perangkat lain sebagai kompensasi sambungan dingin dan juga analog to digital converter, yang perannya dapat dilakukan oleh modul MAX31855. Kombinasi antar ketiganya perlu dievaluasi untuk mengetahui keakuratan DAQ yang terbentuk. Penelitian ini bertujuan untuk mengevaluasi dan mengoreksi kekaurasian self-made temperatur DAQ bebasiskan termokopel tipe K-MAX31855-dan juga Arduino UNO. Self-made temperature DAQ dapat mengukur dinamika temperatur sistem namun dengan akurasi yang cukup rendah, yaitu 0.60°C. Kalibrasi dilakukan untuk meningkatkan keakurasian DAQ menjadi 0.14°C.

Keywords

Arduino Data akuisisi temperatur Kalibrasi MAX31855

Article Details

References

  1. Y. Wu, Y. Wang, W. K. C. Yung, and M. Pecht, “Ultrasonic health monitoring of lithium-ion batteries,” Electronics (Switzerland), vol. 8, no. 7, Jul. 2019, doi: 10.3390/electronics8070751.
  2. Y. Gao, L. Yu, J. C. Yeo, and C. T. Lim, “Flexible Hybrid Sensors for Health Monitoring: Materials and Mechanisms to Render Wearability,” Advanced Materials, vol. 32, no. 15. Wiley-VCH Verlag, Apr. 01, 2020. doi: 10.1002/adma.201902133.
  3. A. Babapoor, G. Karimi, and S. Sabbaghi, “Thermal characteristic of nanocomposite phase change materials during solidification process,” J Energy Storage, vol. 7, pp. 74–81, Aug. 2016, doi: 10.1016/J.EST.2016.05.006.
  4. A. Karaipekli, A. Biçer, A. Sarı, and V. V. Tyagi, “Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes,” Energy Convers Manag, vol. 134, pp. 373–381, Feb. 2017, doi: 10.1016/J.ENCONMAN.2016.12.053.
  5. A. Hassan, M. S. Laghari, and Y. Rashid, “Micro-encapsulated phase change materials: A review of encapsulation, safety and thermal characteristics,” Sustainability (Switzerland), vol. 8, no. 10. MDPI, Oct. 19, 2016. doi: 10.3390/su8101046.
  6. T. Ding, Z. Meng, K. Chen, G. Fan, and C. Yan, “Experimental study on thermal stratification in water tank and heat transfer characteristics of condenser in water-cooled passive residual heat removal system of molten salt reactor,” Energy, vol. 205, Aug. 2020, doi: 10.1016/j.energy.2020.118052.
  7. C. Liu, C. Luo, T. Xu, P. Lv, and Z. Rao, “Experimental study on the thermal performance of capric acid-myristyl alcohol/expanded perlite composite phase change materials for thermal energy storage,” Solar Energy, vol. 191, pp. 585–595, Oct. 2019, doi: 10.1016/J.SOLENER.2019.09.049.
  8. M. Ulin et al., “Rancang Bangun Alat Hypo-Hyperthermia Berbasis Arduino,” 2020.
  9. A. D’Ausilio, “Arduino: A low-cost multipurpose lab equipment,” Behav Res Methods, vol. 44, no. 2, pp. 305–313, Jun. 2012, doi: 10.3758/s13428-011-0163-z.
  10. I. Roihan and R. A. Koestoer, “Data logger multichannel based on Arduino-Uno applied in thermal measurement of solar still Carocell L3000,” in AIP Conference Proceedings, American Institute of Physics Inc., Dec. 2020. doi: 10.1063/5.0034930.
  11. R. Septiana, I. Roihan, and R. A. Koestoer, “Development of portable grashof incubator type a up to h using digital thermostat w1209 to improve heat performance according to SNI IEC 60601-2-19: 2014 Criteria,” in AIP Conference Proceedings, American Institute of Physics Inc., Jul. 2020. doi: 10.1063/5.0013198.
  12. W. J. Iskandar, I. Roihan, and R. A. Koestoer, “Prototype low-cost portable electrocardiogram (ECG) based on Arduino-Uno with Bluetooth feature,” in AIP Conference Proceedings, American Institute of Physics Inc., Dec. 2019. doi: 10.1063/1.5139392.
  13. R. A. Koestoer, N. Pancasaputra, I. Roihan, and Harinaldi, “A simple calibration methods of relative humidity sensor DHT22 for tropical climates based on Arduino data acquisition system,” in AIP Conference Proceedings, American Institute of Physics Inc., Jan. 2019. doi: 10.1063/1.5086556.
  14. A. V. Zaelani, R. A. Koestoer, I. Roihan, and Harinaldi, “Analysis of temperature stabilization in grashof incubator with environment variations based on Indonesian national standard (SNI),” in AIP Conference Proceedings, American Institute of Physics Inc., Jan. 2019. doi: 10.1063/1.5086550.
  15. R. A. Koestoer, Y. A. Saleh, I. Roihan, and Harinaldi, “A simple method for calibration of temperature sensor DS18B20 waterproof in oil bath based on Arduino data acquisition system,” in AIP Conference Proceedings, American Institute of Physics Inc., Jan. 2019. doi: 10.1063/1.5086553.
  16. R. Septiana, I. Roihan, and R. A. Koestoer, “Testing a calibration method for temperature sensors in different working fluids,” Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, vol. 68, no. 2, pp. 84–93, 2020, doi: 10.37934/ARFMTS.68.2.8493.
  17. X. Gao, G. Chen, and H. Li, “Design of Signal Acquisition and Processing System for Temperature Sensor Experiment Instrument,” Int J Sci, vol. 9, no. 08, pp. 9–13, 2020, doi: 10.18483/ijsci.2361.
  18. R. Septiana, I. Roihan, and R. A. Koestoer, “Denoising MAX6675 reading using Kalman filter and factorial design,” International Journal of Electrical and Computer Engineering, vol. 11, no. 5, pp. 3818–3827, Oct. 2021, doi: 10.11591/ijece.v11i5.pp3818-3827.
  19. R. Septiana, I. Roihan, and J. A. Karnadi dan Raldi Koestoer, “Calibration of K-Type Thermocouple and MAX6675 Module With Reference DS18B20 Thermistor Based on Arduino DAQ,” 2019.
  20. Adafruit Inc, “MAX31855 as alternative for MAX6675,” https://www.adafruit.com/product/269.
  21. Y. Wishnu Pandu Prayudha and S. Muhammad Fadhil dan Sentot Novianto, “Rancang Bangun Sistem Pengukuran Alat Thermobath sebagai Alat Kalibrasi Temperatur dengan Sistem Arduino Uno Informasi artikel,” vol. 4, pp. 25–34, 2022.