Main Article Content

Abstract





Two-thirds of Indonesia's territory is waters that have a high risk of flooding. Bathymetric surveys are important for flood management because they provide depth and topography data to determine the need for dredging of a water area. Traditional bathymetric surveys produce less than optimal coverage due to limited ship movements. This research aims to develop an automatic bathymetry system using a ping sonar echosounder sensor integrated with a USV (Unmanned Surface Vehicle). The ping sonar echosounder produced by ROVMAKER can generally only be accessed using the built-in software from the ROVMAKER manufacturer and can now be integrated with the microcontroller system on the USV to increase the efficiency of bathymetric system performance. This research also uses the Kalman filter method to reduce sensor reading noise. Validation of the suitability of the sensor shows an average error of 2.94% at a depth of 1400mm and 2.195% at a depth of 2200mm, which shows that the sensor is classified as suitable for use. The optimal noise reduction in the Kalman filter experiment is at a variance ratio (R/Q) of 1000 with an RMSE of 5.05mm at a depth of 1400mm and 3.99mm at a depth of 2200mm. This system has been proven to increase the accuracy of bathymetric data and system access efficiency.





Article Details

References

  1. G. Nikawanti, “Ecoliteracy: Membangun Ketahanan Pangan Dari Kekayaan Maritim Indonesia,” Jurnal Kemaritiman: Indonesian Journal of Maritime, vol. 2, no. 2, pp. 149–166, 2021.
  2. D. SAFITRI, “KARAKTERISTIK ALIRAN DAN DEBIT BANJIR PADA BEBERAPA SUNGAI DI INDONESIA: KAJIAN LITERATUR,” JICE (Journal of Infrastructural in Civil Engineering), vol. 2, no. 02, p. 1, Aug. 2021, doi: 10.33365/jice.v2i02.1322.
  3. D. Setiawan, “Analisis curah hujan di Indonesia untuk memetakan daerah potensi banjir dan tanah longsor dengan Metode Cluster Fuzzy C-Means dan Singular Value Decompotition (SVD),” Engineering, MAthematics and Computer Science Journal (EMACS), vol. 3, no. 3, pp. 115–120, 2021.
  4. T. P. E. Pratama, W. P. Prihadita, V. P. Yuliatama, S. P. Ramadhani, W. Safitri, and H. N. Syifa, “Analisis Index Overlay Untuk Pemetaan Kawasan Berpotensi Banjir di Gowa, Provinsi Sulawesi Selatan,” Jurnal Geosains dan Remote Sensing, vol. 1, no. 1, pp. 52–63, 2020.
  5. M. B. Al Amin, Pemodelan sistem drainase perkotaan menggunakan SWMM. Deepublish, 2020.
  6. R. D. V. Rut, “Rancang Bangun Peringatan Dini Banjir Berbasis Arduino Uno,” Jurnal Portal Data, vol. 1, no. 2, 2021.
  7. R. NUGRAHA, “SURVEI BATIMETRI DI AREA VOID PIT DENGAN MENGGUNAKAN WAHANA TELEDYNE ODOM SINGLEBEAM ECHOSOUNDER SINGLE FREQUENCY,” Prosiding Temu Profesi Tahunan PERHAPI, pp. 191–200, 2020.
  8. Y. Yuwono, D. G. Pratomo, and M. I. F. Al-Azhar, “Analisis posisi kerangka kapal terhadap keselamatan alur pelayaran menggunakan data multibeam echosounder (Studi kasus: Alur pelayaran barat Surabaya),” Geoid, vol. 14, no. 1, pp. 13–21, 2018.
  9. Oktafari and Daffa Naufal, “Rancang Bangun Konfigurasi Sistem Pengambilan Data Batimetri Kontur Dasar Laut dengan Unmanned Surface Vehicle (USV),” Institut Teknolog Sepuluh November, 2023.
  10. A. H. DWIANTO and D. T. T. LAUT, “ANALISIS POLA OPERASI DAN PERANCANGAN KAPAL PINISI UNTUK WISATA BAHARI: STUDI KASUS KEPULAUAN SELAYAR”.
  11. A. Ma’arif, I. Iswanto, A. A. Nuryono, and R. I. Alfian, “Kalman filter for noise reducer on sensor readings,” Signal and Image Processing Letters, vol. 1, no. 2, pp. 50–61, 2019.
  12. M. Safitri, A. Cahyadi, E. Firmansyah, and J. Grafika, “Estimasi Posisi UAV dengan Kalman Filter,” no. September, pp. 240–245, 2015.
  13. I. S. H. Sujoto and H. Sutiksno, “Studi Analisa Kalman Filter Sebagai State Estimator Untuk Meningkatkan Akurasi Pengukuran Kecepatan Motor DC,” Journal of Information System,Graphics, Hospitality and Technology, vol. 3, no. 01, pp. 9–18, Apr. 2021, doi: 10.37823/insight.v3i01.96.
  14. W. S. Pambudi and I. Suhendra, “Perbaikan respon output menggunakan implementasi kalman filter pada simulasi pembacaan sensor beban load cell,” in Seminar Nasional Sains Dan Teknologi Terapan, 2015, pp. 141–150.
  15. M. A. Bahris, F. Nasrudien, B. Ferdiansyah, D. E. Yulian, M. Thaifur, and W. S. Pambudi, “Implementasi Kalman Filter Pada Pengukuran Ketinggian Air Menggunakan Sensor Ultrasonik,” in Prosiding Seminar Nasional Teknik Elektro, Sistem Informasi, dan Teknik Informatika (SNESTIK), 2022, pp. 109–115.
  16. Y. Pei, S. Biswas, D. S. Fussell, and K. Pingali, “An elementary introduction to Kalman filtering,” Commun ACM, vol. 62, no. 11, pp. 122–133, 2019.