Studi Potensi Pengembangan Pembangkit Listrik Hybrid Genset-PV di Wilayah Pesisir Kabupaten Malang
DOI:
https://doi.org/10.33795/elposys.v10i1.1384Keywords:
Renewable Energy, Photovoltaic, Hybrid Power Generation, Economics, Optimal ConfigurationAbstract
The need for electrical energy in a region is increasing along with the growth of the population. Sources of electrical energy derived from fossils will run out over time because this energy is non-renewable. Thus, renewable sources of electrical energy must be developed and become a very urgent need for the community, including in the southern coastal area of Malang Regency, East Java. The location has sufficient solar radiation potential and can be used to generate electrical energy. The development of renewable energy supports the self-sufficiency of the community in fulfilling electricity by utilizing the resources around them. This paper aims to examine the opportunities for developing hybrid power plants (electric generator sets and solar panels) in the southern coastal area of Malang Regency using the HOMER software simulation. The results of the study concluded that generation using a hybrid system, with a COE value of IDR 6,972, an NPC value of IDR 615 (million) and a CO2 emission value of 5,992 kg per year is the recommended system configuration. The results of this study were then taken into consideration in designing a power generation system in the south coast region of Malang Regency.
References
Bahramara, S., Moghaddam, M. P., & Haghifam, M. R. (2016). Optimal planning of hybrid renewable energy systems using HOMER: A review. Renewable and Sustainable Energy Reviews, 62, 609-620.
Hosseinalizadeh, R., Shakouri, H., Amalnick, M. S., & Taghipour, P. (2016). Economic sizing of a hybrid (PV–WT–FC) renewable energy system (HRES) for stand-alone usages by an optimization-simulation model: Case study of Iran. Renewable and Sustainable Energy Reviews, 54, 139-150.
Kazem, H. A., Al-Badi, H. A., Al Busaidi, A. S., & Chaichan, M. T. (2017). Optimum design and evaluation of hybrid solar/wind/diesel power system for Masirah Island. Environment, Development and Sustainability, 19, 1761-1778.
Demirbaş, A. (2006). Global renewable energy resources. Energy sources, 28(8), 779-792.
Lubis, A. (2007). Energi terbarukan dalam pembangunan berkelanjutan. Jurnal Teknologi Lingkungan, 8(2).
R. Yunginger dan N. Sune., “Analisis Energi Angin Sebagai Energi Alternatif Pembangkit Listrik Di Kota Di Gorontalo”, Gorontalo: Universitas Negeri Gorontalo, 2015.
M. N. Hidayat, A. Rahmat dan F. Ronilaya, "Feasibility Analysis Of A Renewable Autonomous Power Supply System At a Coastal Area In Indonesia", International Journal of Energy Economics and Policy, vol. 10, no. 3, pp. 175-181, 2020.
Liun, E. (2011). potensi energi alternatif dalam sistem kelistrikan Indonesia. In Prosiding Seminar Nasional Pengembangan Energi Nuklir IV.
"Indonesia Kaya Energi Surya, Pemanfaatan Listrik Tenaga Surya oleh Masyarakat Tidak Boleh Ditunda", ebtke.esdm.go.id, 2021. [Online]. Tersedia: https://ebtke.esdm.go.id/post/2021/09/02/2952/indonesia.kaya.energi.surya.pemanfaatan.listrik.tenaga.surya.oleh.masyarakat.tidak.boleh.ditunda.
Al Hakim, R. R. (2020). Model energi Indonesia, tinjauan potensi energi terbarukan untuk ketahanan energi di Indonesia: Sebuah ulasan. ANDASIH Jurnal Pengabdian Kepada Masyarakat, 1(1).
Magarappanavar, U. S., & Koti, S. (2016). Optimization of wind-solar-diesel generator hybrid power system using HOMER. Optimization, 3(06).
Sampaio, P. G. V., & González, M. O. A. (2017). Photovoltaic solar energy: Conceptual framework. Renewable and Sustainable Energy Reviews, 74, 590-601.
Boxwell, M. (2012) Solar Electricity Handbook—A Simple Practical Guide to Solar Energy—Designing and Installing Photovoltaic Solar Electric Systems. Greenstream Publishing, UK.
Leuchter, J., Bauer, P., Rerucha, V., & Hajek, V. (2008). Dynamic behavior modeling and verification of advanced electrical-generator set concept. IEEE Transactions on Industrial Electronics, 56(1), 266-279.
"Diesel generator - Energy Education", Energyeducation.ca, 2020. [Online]. Tersedia: https://energyeducation.ca/encyclopedia/Diesel_ generator.
Joseph, A., & Shahidehpour, M. (2006, June). Battery storage systems in electric power systems. In 2006 IEEE Power Engineering Society General Meeting (pp. 8-pp). IEEE.
Stock, A., Stock, P., & Sahajwalla, V. (2015). Powerful potential: Battery storage for renewable energy and electric cars. Climate Council of Australia Limited, Australia.
Shahzad, M. K., Zahid, A., ur Rashid, T., Rehan, M. A., Ali, M., & Ahmad, M. (2017). Techno-economic feasibility analysis of a solar-biomass off grid system for the electrification of remote rural areas in Pakistan using HOMER software. Renewable energy, 106, 264-273.
Kansara, B. U., & Parekh, B. R. (2011, December). Modelling and simulation of distributed generation system using HOMER software. In 2011 International Conference on Recent Advancements in Electrical, Electronics and Control Engineering (pp. 328-332). IEEE.
Ahmad, G. E. (2002). Photovoltaic-powered rural zone family house in Egypt. Renewable Energy, 26(3), 379-390.
Aziz, A. S., Tajuddin, M. F. N., Adzman, M. R., Ramli, M. A., & Mekhilef, S. (2019). Energy management and optimization of a PV/diesel/battery hybrid energy system using a combined dispatch strategy. Sustainability, 11(3), 683.
Ngan, M. S., & Tan, C. W. (2012). Assessment of economic viability for PV/wind/diesel hybrid energy system in southern Peninsular Malaysia. Renewable and Sustainable energy reviews, 16(1), 634-647.
Hidayat, M. N., Akbar, D. N., Syamsiana, I. N., & Ridzky, I. (2020, September). Analysis of potential development of the hybrid power plants in coastal areas of Malang Regency-Indonesia. In AIP Conference Proceedings (Vol. 2255, No. 1, p. 020013). AIP Publishing LLC.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Elposys: Jurnal Sistem Kelistrikan
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.