Analisis Teknis dan Keekonomian Sistem Hibrida Pada Pelayanan Kelistrikan Pulau Rhun

Authors

  • Adams Yogasara IT PLN
  • Rinaldi Maulana PT. PLN (Persero) Kantor Pusat
  • Tri Wahyu Adi IT PLN

DOI:

https://doi.org/10.33795/elposys.v11i3.6289

Keywords:

hybrid power system, Photovoltaic (PV), BESS, LCOE, Isolated Microgrid, Energy Transition

Abstract

Indonesia, as the largest archipelagic country, faces significant challenges in providing consistent electricity to its numerous isolated microgrids, many of which rely on diesel generators. The limited operational hours of these systems hinder economic growth, especially in remote regions like Rhun Island. This research aimed to develop an optimized hybrid power system integrating photovoltaic (PV) panels and Battery Energy Storage Systems (BESS) to extend electricity availability and reduce reliance on fossil fuels. Using simulation tools such as PVsyst and HOMER Pro, the study evaluated various configurations to identify the most cost-efficient and sustainable solution. Additionally, Demand Side Management (DSM) strategies, including peak clipping and load shifting, were applied to further optimize the system's performance and reduce operational costs. The findings demonstrated that the hybrid system significantly decreased the Levelized Cost of Energy (LCOE) to $0.431/kWh compared to a diesel-only system. Furthermore, the renewable energy fraction increased to 81.7%, contributing to Indonesia's energy transition goals. This research offers a replicable model for other small islands, promoting sustainable energy solutions and supporting local economic development by ensuring a stable 24-hour power supply. The implications suggest that adopting hybrid systems with DSM can accelerate energy equity and environmental sustainability in remote areas.

References

H. Louie, Off-Grid Electrical Systems in Developing Countries. Springer International Publishing, 2018. doi: 10.1007/978-3-319-91890-7.

F. Norouzi, T. Hoppe, L. R. Elizondo, and P. Bauer, “A review of socio-technical barriers to Smart Microgrid development,” Oct. 01, 2022, Elsevier Ltd. doi: 10.1016/j.rser.2022.112674.

M. Hadi Ibrahim, A. Purwadi, and A. Rizqiawan, “Perancangan Sistem Pembangkit Hibrida Untuk Beban Komunal dan Kantor di Desa Leiting Provinsi Maluku,” 2019.

C. Dennis and C. B. Winn, “Optimal Dispatch Strategy In Remote Hybrid Power Systems,” 1996.

H. Akter, H. O. R. Howlader, A. Y. Saber, P. Mandal, H. Takahashi, and T. Senjyu, “Optimal sizing of hybrid microgrid in a remote island considering advanced direct load control for demand response and low carbon emission,” Energies (Basel), vol. 14, no. 22, Nov. 2021, doi: 10.3390/en14227599.

R. Maulana, “Pra-studi Kelayakan Sistem Hibrida PV-Baterai-PLTD di Daerah Pedesaan Wilayah Maluku,” Jurnal Sistem Kelistrikan, vol. 11, no. 2, pp. 92–97, Jun. 2024, doi: https://doi.org/10.33795/elposys.v11i2.5165.

L. Mariam, M. Basu, and M. F. Conlon, “Microgrid: Architecture, policy and future trends,” Oct. 01, 2016, Elsevier Ltd. doi: 10.1016/j.rser.2016.06.037.

M. K. Babu and P. Ray, “Sensitivity analysis, optimal design, cost and energy efficiency study of a hybrid forecast model using HOMER pro,” Journal of Engineering Research (Kuwait), vol. 11, no. 2, Jun. 2023, doi: 10.1016/j.jer.2023.100033.

N. M. Kumar, M. R. Kumar, P. R. Rejoice, and M. Mathew, “Performance analysis of 100 kWp grid connected Si-poly photovoltaic system using PVsyst simulation tool,” in Energy Procedia, Elsevier Ltd, 2017, pp. 180–189. doi: 10.1016/j.egypro.2017.05.121.

K. J. Sauer, T. Roessler, and C. W. Hansen, “Modeling the irradiance and temperature dependence of photovoltaic modules in PVsyst,” IEEE J Photovolt, vol. 5, no. 1, pp. 152–158, Jan. 2015, doi: 10.1109/JPHOTOV.2014.2364133.

S. A. D. Mohammadi and C. Gezegin, “Design and Simulation of Grid-Connected Solar PV System Using PVSYST, PVGIS and HOMER Software,” International Journal of Pioneering Technology and Engineering, vol. 1, no. 01, pp. 36–41, Jun. 2022, doi: 10.56158/jpte.2022.24.1.01.

A. A. Khan, A. F. Minai, and M. A. Siddiqui, “Feasibility and Techno-Economic Assessment of a 128kWp Grid-Tied SPV System using HOMER Pro,” in Journal of Physics: Conference Series, Institute of Physics, 2024. doi: 10.1088/1742-6596/2777/1/012008.

B. De Reyck, Z. Degraeve, and R. Vandenborre, “Project options valuation with net present value and decision tree analysis,” Eur J Oper Res, vol. 184, no. 1, pp. 341–355, Jan. 2008, doi: 10.1016/j.ejor.2006.07.047.

F. Ueckerdt, L. Hirth, G. Luderer, and O. Edenhofer, “System LCOE: What are the costs of variable renewables?,” Energy, vol. 63, pp. 61–75, Dec. 2013, doi: 10.1016/j.energy.2013.10.072.

V. Motjoadi, K. E. Adetunji, and P. K. Meera Joseph, “Planning of a sustainable microgrid system using HOMER software,” in 2020 Conference on Information Communications Technology and Society, ICTAS 2020 - Proceedings, Institute of Electrical and Electronics

Downloads

Published

2024-10-30

How to Cite

Yogasara, A., Maulana, R., & Adi, T. W. (2024). Analisis Teknis dan Keekonomian Sistem Hibrida Pada Pelayanan Kelistrikan Pulau Rhun. Elposys: Jurnal Sistem Kelistrikan, 11(3), 201–206. https://doi.org/10.33795/elposys.v11i3.6289