Pemodelan dan simulasi kinematika robot swerve 4 roda
DOI:
https://doi.org/10.33795/eltek.v20i1.301Keywords:
Kinematika, Pergerakan, Robot Respon SistemAbstract
Pemodelan kinematika berperan penting dalam mengontrol perpindahan robot. Perpindahan robot tidak semata menentukan koordinat awal dan akhir, tetapi juga menentukan kecepatan masing-masing motor yang dibutuhkan untuk mencapai posisi yang diinginkan. Pada penelitian ini, pengembangan algoritma kontrol kinematika untuk mengontrol pergerakan diterapkan pada robot swerve 4 roda. Hal ini bertujuan untuk mengetahui hubungan antara pengerakan robot dengan kecepatan aktuaktor pada ruang 2 dimensi. Metode yang digunakan pada penelitian ini adalah metode motion rigid body analysis. Metode ini digunakan untuk menganalisis hubungan antara pergerakan robot dengan kecepatan aktuaktor kemudian, diimplementasikan pada posisi tujuan yang bersifat diam dan bergerak. Skenario pengujian dilakukan untuk memvalidasi performa dari kontrol algoritma yang ditawarkan dengan cara simulasi, dimana berbantuan bahasa pemrograman python. Hasil simulasi yang ditampilkan bahwa, robot dapat bergerak dari posisi awal menuju posisi tujuan baik pada target diam mapunu bergerak. Target diam, robot mampu bergerak dengan membentuk jalur secara linier menuju posisi rujuan dan target bergerak, robot mampu bergerak dengan membentuk jalur dengan pola angka delapan. Dari hasil simulasi tersebut didapatkan bahwa, efektivitas dari metode rigid body analysis mampu mengatasi permasalahan yang ditawarkan dimana robot mampu bergerak menuju target yang diam dan bergerak dengan pemodalan kinematika yang telah dirancang.
ABSTRACT
Kinematic modeling plays an important role in controlling movement of the robot. Movement of the robot not only determines the start and end coordinates, but also determines the speed of each motor needed to reach the desired position. In this research, the development kinematic control algorithm to control movement of 4-wheel swerve robot. This aims to determine the relationship between the movement of the robot with the speed of the actuator in 2 dimensional space. The method used in this research is motion rigid body analysis. This method is used to analyze the relationship between movement robot with speed of the actuator then, implemented at the destination position which is static and dynamic. The test scenario was carried out to validate the performance of the control algorithm offered by simulation, which was assisted by the python programming language. The simulation results show that the robot can move from its initial position to its destination position, both on static and dynamic targets. The target is static, the robot is able to move by forming a linear path to the target position and the target is dynamic, the robot is able to move by forming a path with a figure eight pattern. From the simulation results, it was found that the effectiveness of the rigid body analysis method was able to overcome the problems offered. Where the robot is able to move towards a static and dynamic target with the kinematics modelling that has been designed.
References
I. Siradjuddin, G.A. Azhar, S. Wibowo, F. Ronilaya, and E. Rohadi, "A General Inverse Kinematic Formulation and Control Schemes for Omnidirectional Robot using Omni or Mecanum Wheel" in International Journal of Electrical and Computer Engineering (IJECE), April 2020.
S. Wibowo, I. Siradjuddin, F. Ronilaya, and M.N. Hidayat, "Improving teleoperation robots performance by eliminating view limit using 360 camera and enhancing the immersive experience utilizing VR headset" in Annual Technology, Applied Science and Engineering Conference (ATASEC), may 2021.
Y. CHEN, S. CHEN, Y. ZHAO, Z. GAO , AND C. LIO, “Optimized Handling Stability Control Strategy for a Four In-Wheel Motor Independent-Drive Electric Vehicle” in IEEE Access, February 2019. J.
Zhang, X. Yu, M. Zeng, W. Sun, Z. LiuA, “novel motion control for ground vehicles with 4 independent wheel agents” in IEEE/International Symposium on Industrial Electronics (ISIE), Juni 2019.
J. S. Hu, Y. Wang, H. Fujimoto, and Y. Hori,“Robust yaw stability control for in-wheel motor electric vehicles,” IEEE/ASME Transactions on Mechatronics, vol. 22, no. 3, pp. 1360–1370, 2017.
R. Wang, H. Zhang, and J. Wang, “Linear parametervarying controller design for four-wheel independently actuated electric ground vehicles with active steering systems,” IEEE Transactions on Control Systems Technology, vol. 22, no. 4, pp. 1281–1296, 2014.
J. Alexander and J. Maddocks, “On the kinematics of wheeled mobile robots,” The International Journal of Robotics Research, vol. 8, no. 5, pp. 15–27, 1989. [Online]. Available: https://doi.org/10.1177/027836498900800502.
Ming-Han Lee, Tzuu-Hseng S. Li, “Kinematics, dynamics and control design of 4WIS4WID mobile robots” in The Journal of Engineering, October 2014.
Tzuu-Hseng S. Li, Ming-Han Lee, Chia-Wei Lin, Guan-Hong Liou, and Wei-Chung Chen, “Design of Autonomous and Manual Driving System for 4WIS4WID Vehicle” in IEEE Access, March 2016.
G. Todoran, and M. Bader, “Expressive Navigation and Local Path-Planning of Independent Steering Autonomous Systems” in International Conference on Intelligent Robots and Systems (IROS), October 2016.
F. Hua,G. Li, F. Liu, and Y. Liu, “Mechanical Design of a Four-wheel Independent Drive and Steering Mobile Robot Platform” in Conference on Industrial Electronics and Applications (ICIEA), 2016.
Z. Yao, G. Liu, D. Zhang, Y. Shen, Z. Wang, “Path Tracking Control for Four-Wheel-IndependentDriven Agricultural High Clearance Sprayer with New Front-Rear-Dual-Steering-Axle” in Chinese Automation Congress, June 2024.
X. Zhang, Y. Xie, L. Jiang, G. Li, J. Meng, and Y. Huang, “Trajectory Tracking of a 4wis4wid Robot Using Adaptive Receding Horizon Control Based on Neurodynamics Optimization” in International Conference on Advanced Intelligent Mechatronics, july 2019.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Indrazno Siradjuddin, Sapto Wibowo, Arta Ainur Rofiq
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.