Analisis perbandingan tipe belitan terhadap nilai parameter motor induksi satu fasa
DOI:
https://doi.org/10.33795/eltek.v20i1.318Keywords:
Motor Induksi, Rewinding, Tipe Belitan, Parameter Motor InduksiAbstract
Motor induksi merupakan salah satu motor listrik yang luas penggunaannya. Salah satu jenis motor induksi adalah motor induksi satu fasa. Pada kondisi tertentu motor induksi perlu dilakukan rewinding pada kumparannya. Proses rewinding sebelumnya harus ditentukan jumlah kutub, tipe belitan, dimensi konduktor, serta jumlah lilitnya. Praktik di lapangan ketika melakukan proses rewinding umummya hanya memperhatikan jumlah kutub, akan tetapi tipe belitan tidak begitu diperhatikan secara khusus. Pada dasaranya setiap tipe belitan menghasilkan gaya gerak magnit (mmf) yang berbedabeda, yang mana mmf tersebut mengandung komponen fundamental dan komponen harmonisanya. Hal ini akan berakibat fluksi yang dihasilkan juga berbeda. Dimana fluksi juga mempunyai peran pada nilai parameter motor induksi satu fasa. Pada penelitian ini dilakukan proses rewinding pada dua motor induksi dengan konstruksi yang sama, motor induksi pertama (M1) dengan tipe belitan terbagi-skrew dan motor induksi kedua (M2) dengan tipe belitan terpusat terdistribusi, kemudian dilakukan pengujian untuk mengetahui paramater motor induksi hasil rewinding. Hasil pengujian didapatkan perbedaan nilai reaktansi dimana M1 nilai reaktansi kumparan stator dan rotornya berturut-turut 5,71 Ω dan 5,71 Ω, pada M2 nilai reaktansi stator dan rotornya berturut-turut 5,98 Ω dan 5,98 Ω. Analisis perbedaan nilai reaktansi motor induksi tersebut dilakukan analisis finite element menggunakan perangkat lunak FEMM 4.2.
ABSTRACT
The single-phase induction motor is one of the most widely used electric motors. Under certain conditions, the induction motor needs to be rewinded on the coil. The rewinding process must determine the number of poles, the type of winding, the dimensions of the conductor, and the number of turns. Generally, when carrying out the rewinding process, the winding type is not given much special attention. Where each type of winding produces a different magnetomotive force (mmf). This will result in different fluxes resulting in different parameter values for single-phase induction motors. In this study, a comparison of the parameters of an induction motor with the same construction and with different winding types will be carried out. The first motor (M1) is of the screw-shared winding type and the second motor (M2) is of the distributed concentrated winding type. The test results show a difference in the reactance value where M1 the reactance values of the stator and rotor coils are 5.71 Ω and 5.71 Ω, respectively, while in M2 the stator and rotor reactance values are 5.98 Ω and 5.98 Ω, respectively. The difference in reactance values was carried out by finite element analysis using FEMM 4.2.
References
A. Pali, “A New Sensorless Speed Estimation Strategy for Induction Motor Driven Electric Vehicle with Energy Optimization Scheme,” IEEE, 2016.
C. Li, D. Xu, and G. Wang, “High Efficiency Remanufacturing of Induction Motors With Interior Permanent-Magnet Rotors and Synchronous-Reluctance Rotors,” pp. 2–7, IEEE, 2017.
N. Rivière and M. Villani, “Optimisation of a High Speed Copper Rotor Induction Motor for a Traction Application,” IECON 2019 - 45th Annu. Conf. IEEE Ind. Electron. Soc., vol. 1, pp. 2720–2725, IEEE, 2019.
Mismail Budiono, Dasar Teknik Elektro. Malang :Universitas Brawijawa Press, 2011
S. S. Babu, “Current Programmed Controlled DC-DC Converter for Emulating the Road Load in Six
Phase Induction Motor Drive in Electric Vehicle,” IEEE, 2020.
R. N. Silalahi, B. Sugiyantoro, F. D. Wijaya, “Merancang Ulang Motor Induksi 1000 rpm dengan Menggunakan Rangka Stator Motor 1500 rpm”, Jurnal Penelitian Teknik Elektro Vol. 3 No. 3, 2010
Jimmie J. Cathey, 2001. Electric Machines: Analysis and Design Applying MATLAB. Singapore. The McGraw-Hill Companies, Inc.,
A. Conradi, D. Schmidt, C. Deeg, “Contribution to the Analysis of End Winding Inductances of Induction Machines - I”, International Conference on Electrical Machines (ICEM), 2016.
A. R. Khan and Q. Ahsan, “Development and Performance Analysis of a Two- Phase Induction Motor in the Frame and Core of a Single-Phase Induction Motor,” pp. 469–472, IEEE, 2014.
Ion Boldea dan Syed A. Nasar. The Induction Machne Handbook. CRC Press. 2001.
Z. Yang, X. Li, C. Zhang, and S. Chi, “A New Slip Compensation Method for Induction Motors Based on Current Vector Decoupling,” IEEE, 2017.
D. Bhowmick, M. Manna, and S. K. Chowdhury, “Online Estimation and Analysis of Equivalent Circuit Parameters of Three Phase Induction Motor Using Particle Swarm Optimization,” pp. 1–5, 2016.
A. Khitrov, A. Khitrov, K. Kurikov, “Parameter Identification of Induction Motor Drives”, International Workshop on Electric Drives, 2021
S. Riyanto, A. Supriadi, “Analisis Pengasutan Motor Induksi Tiga Fasa 15 Hp Menggunakan Metode Dol (Direct On Line) Pada Pdam Juwata Laut Tarakan”, Jurnal Elektrika Borneo (JEB), Vol. 4, No. 2, Oktober 2018, hlm. 11-16
J. Di, Y. Fan, and Y. J. Liu, “Equivalent Parameter Estimation of a Single-Sided Linear Induction Motor Based on Electromagnetic Field Induced by Current FFT-Wave,” no. 51077003, pp. 89–91, 2015.
Sawhney A.K, 1990. Electrical Machine Design. New Delhi : Dhanfat Rai & Sons.Gonen, Turan. 1987. Electric Power Distribution Sistem Engineering. Singapore: McGraw-Hill Book Company.
H. Al-ajmi and M. I. Masoud, “A Case Study for Five Phase Induction Motor Design : Evaluation using Finite Element Analysis,” no. 1, 2017.
Pudji Irasari, Hilman Syaeful Alam, dan Muhammad Kasim, Magnetic Simulation and Analysis of Radial Flux Permanent Magnet Generator Using Finite Element Method. Mechatronics, Electrical Power, and Vehicular Technology 03 : 23-30, 2012
De Lima, R. A., Coimbra, A. C. P., Almeida, T., Gomes, V. M., Pereira, T. M., Alves, A. J., & Calixto, W. P., “Influence Of Slot Geometry On Air Gap Magnetic Flux Density Of Rotating Machines”, IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC), 2016.
S. Makita, Y. Ito, T. Aoyama, and S. Doki, “Winding Factor and a High Slot Fill Factor,” pp. 3823–3827, 2014.
A. O. Di Tommaso, F. Genduso, R. Miceli, Member, IEEE, dan C. Nevoloso. Fast Procedure for the Calculation of Maximum Slot Filling Factors in Electrical Machines. IEEE. 2017.
Caruso, M., Di Tommaso, A. O., Miceli, R., & Nevoloso, C., “Algorithmic Approach for Slot Filling Factors Determination in Electrical Machines”, IEEE, 2018.
Linnemann, M., Bach, M., Psyk, V., Werner, M., Gerlach, M., & Schubert, N., “Resource-Efficient, Innovative Coil Production For Increased Filling Factor”, IEEE, 2019.
Riedel, A., Roessert, A., Kuehl, A., & Franke, J., “Calculation of the Copper Filling Factor of Electric Traction Drives including Graphical Representation”, International Conference on Electrical Machines and Systems (ICEMS), 2019
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Imron Ridzki, Asfari Hariz Santoso, Ahmad Hermawan
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.