Analisis peramalan kebutuhan energi listrik sektor industri di Jawa Timur dengan metode regresi linear

Authors

  • Rohmanita Duanaputri Jurusan Teknik Elektro, Politeknik Negeri Malang, Indonesia
  • Sulistyowati Sulistyowati Jurusan Teknik Elektro, Politeknik Negeri Malang, Indonesia
  • Putra Aulia Insani Jurusan Teknik Elektro, Politeknik Negeri Malang, Indonesia

DOI:

https://doi.org/10.33795/eltek.v20i2.352

Keywords:

Jawa Timur, Kebutuhan Energi Listrik, MAPE, Metode Regresi Linear, Peramalan

Abstract

Kebutuhan energi listrik selalu mengalami peningkatan, diikuti meningkatnya pertumbuhan penduduk. Permasalahan akan muncul apabila kebutuhan energi listrik tidak diperkirakan. Maka perlu dilakukan peramalan kebutuhan energi listrik untuk memprediksikan ketersediaan energi listrik di masa mendatang. Pada penelitian ini, dilakukan peramalan kebutuhan energi listrik menggunakan metode regresi linier pada sektor industri di Jawa Timur untuk tahun 2023-2027. Berdasarkan hasil perhitungan prediksi dan MAPE (2009- 2021), didapatkan metode regresi linier masih baik dan layak digunakan menurut standar MAPE. Kemudian dibandingkan hasil prediksi dan MAPE (2010-2020) antara metode regresi linear dengan metode time series pada penelitian sebelumnya, didapatkan metode time series menghasilkan prediksi dan MAPE lebih baik dibanding metode regresi linier pada pelanggan listrik, sedangkan pada daya tersambung, energi listrik terjual, dan pendapatan penjualan energi listrik didapatkan metode regresi linier menghasilkan prediksi dan MAPE lebih baik dibanding metode time series, sehingga peramalan pada sektor industri di Jawa Timur (2023-2027) hanya menggunakan metode regresi linier. Dari peramalan ini dihasilkan akan terjadi kenaikan setiap tahun untuk pelanggan listrik sebesar 5.264 pelanggan, daya tersambung sebesar 328,49 MVA, energi listrik terjual sebesar 580,64 GWh, dan pendapatan penjualan energi listrik sebesar 1.065.266,21 Juta Rupiah

ABSTRACT

The need for electrical energy is always increasing, followed by increasing population growth. Problems will arise if the need for electrical energy is not estimated. So it is necessary to forecast the demand for electrical energy to predict the availability of electrical energy in the future. In this study, forecasting of electrical energy demand using linear regression method in the industrial sector in East Java for the years 2023-2027 is carried out. Based on the results of prediction calculations and MAPE (2009-2021), the linear regression method is still good and feasible to use according to MAPE standards. Then compared the results of predictions and MAPE (2010-2020) between the linear regression method with the time series method in previous studies, it was found that the time series method produced better predictions and MAPE than the linear regression method for electricity customers, while on connected power, electrical energy was sold, and income from sales of electrical energy, the linear regression method produces better predictions and MAPE than the time series method, so forecasting in the industrial sector in East Java (2023-2027) only uses the linear regression method. From this forecast, there will be an increase every year with an average of 5,264 electricity customers, 328.49 MVA connected power, 580.64 GWh of electrical energy sold, and 1,065,266.21 million Rupiah sales of electrical energy.

References

M. Dinesh Reddy, Load Forecasting using Linear Regression Analysis in Time series model for RGUKT, R.K. Valley Campus HT Feeder, International Journal of Engineering Research & Technology (IJERT), 6 Issue 05, May – 2017

M. Dinesh Reddy, Load Forecasting using Linear Regression Analysis and Moving Average Technique in Time Series Model for RGUKT, R.K. Valley Campus HT Feeder, International Journal of Engineering Science and Computing, Volume 7 Issue No.5, May-2017

Alfred Rey G. Vasquez, Michael Ernie F. Rodriguez, Roy C. Dayupay, Energy Consumption Forecasting Model for Puerto Princesa Distribution System Using Multiple Linear Regression, International Journal of Innovative Science and Research Technology, ISSN No:-2456-2165, Volume 5, Issue 11, November – 2020

Aneeque Ahmed Mir, et all, Short Term Load Forecasting for Electric Power Utilities: A Generalized Regression Approach Using Polynomials and Cross-Terms †, Licensee MDPI, Basel, Switzerland, 2021

Hong, T.; Fan, S. Probabilistic electric load forecasting: A tutorial review. Int. J. Forecast. 2016, 32, 914–938.

Mir, A.A.; Alghassab, M.; Ullah, K.; Khan, Z.A.; Lu, Y.; Imran, M. A Review of Electricity Demand Forecasting in Low and Middle Income Countries: The Demand Determinants and Horizons. Sustainability 2020, 12, 5931.

Nazih Abu-Shikhah1, Fawwaz Elkarmi1, Osama M. Aloquili, Medium-Term Electric Load Forecasting Using Multivariable Linear and Non-Linear Regression, Scientific Research, Smart Grid and Renewable Energy, 2011, 2, 126-135 doi:10.4236/sgre.2011.22015 Published Online May 2011

D. Bassi and O. Olivare, “Medium Term Electric Load Forecasting Using TLFN Neural Networks,” International Journal of Computers, Communications & Control, Vol. I, No. 2, 2006, pp. 23-32.

B. Bowerman, R. O’Connell and A. Koehler, “Forecasting, Time Seriesand Regression: An Applied Approach,” Thomson Brooks/Cole, California, 2005

M. W. Kristanto, “Peramalan Kebutuhan Energi Listrik UID Jawa Timur Metode Time Series Sektor Industri,” Jurnal Teknik Elektro, vol. 10, no. 03, pp. 793-803, 2021.

M. W. Purnama, “Peramalan Kebutuhan Energi Listrik UID Jawa Timur Metode Time Series Berbasis Minitab v19,” Jurnal Teknik Elektro, vol. 10, no. 02, pp. 485-495, 2021.

Kasmir, Studi Kelayakan Bisnis. Jakarta: Prenada Media, 2003.

M. A. Maricar, “Analisa Perbandingan Nilai Akurasi Moving Average dan Exponential Smoothing Untuk Sistem Peramalan Pendapatan Pada Perusahaan XYZ,” Jurnal Sistem dan Informatika, vol. 13, no. 02, pp. 36-45, 2019. M. Dinesh Reddy, Load Forecasting using Linear Regression Analysis in Time series model for RGUKT, R.K. Valley Campus HT Feeder, International Journal of Engineering Research & Technology (IJERT), 6 Issue 05, May – 2017

PT. PLN, Statistik PLN 2009. Jakarta: Sekretariat Perusahaan PT. PLN (Persero), 2010.

PT. PLN, PLN Statistics 2010. Jakarta: Sekretariat Perusahaan PT. PLN (Persero), 2011.

PT. PLN, Statistik PLN 2011. Jakarta: Sekretariat Perusahaan PT. PLN (Persero), 2012.

PT. PLN, Statistik PLN 2012. Jakarta: Sekretariat Perusahaan PT. PLN (Persero), 2013.

PT. PLN, PLN Statistics 2013. Jakarta: Sekretariat Perusahaan PT. PLN (Persero), 2014.

PT. PLN, Statistik PLN 2014. Jakarta: Sekretariat Perusahaan PT. PLN (Persero), 2015.

PT. PLN, PLN Statistics 2015. Jakarta: Sekretariat Perusahaan PT. PLN (Persero), 2016.

PT. PLN, Statistik PLN 2016. Jakarta: Sekretariat Perusahaan PT. PLN (Persero), 2017.

PT. PLN, PLN Statistics 2017. Jakarta: Sekretariat Perusahaan PT. PLN (Persero), 2018.

PT. PLN, Statistik PLN 2018. Jakarta: Sekretariat Perusahaan PT. PLN (Persero), 2019.

PT. PLN, Statistik PLN 2019. Jakarta: Sekretariat Perusahaan PT. PLN (Persero), 2020.

PT. PLN, Statistik PLN 2020. Jakarta: Sekretariat Perusahaan PT. PLN (Persero), 2021.

PT. PLN, Statistik PLN 2021. Jakarta: Sekretariat Perusahaan PT. PLN (Persero), 2022

Downloads

Published

2022-10-28

How to Cite

[1]
R. Duanaputri, S. Sulistyowati, and P. A. Insani, “Analisis peramalan kebutuhan energi listrik sektor industri di Jawa Timur dengan metode regresi linear”, eltek, vol. 20, no. 2, pp. 50–60, Oct. 2022.