Pemodelan dan simulasi kinematika robot SCARA 3 derajat kebebasan menggunakan MATLAB

Authors

  • Risky Odang Sanjaya Politeknik Elektronika Negeri Surabaya
  • Novian Fajar Satria Politeknik Elektronika Negeri Surabaya
  • Himmawan Sabda Maulana Politeknik Elektronika Negeri Surabaya

DOI:

https://doi.org/10.33795/eltek.v23i2.6767

Keywords:

Kinematika Maju, Kinematika Terbalik, MATLAB, SCARA

Abstract

Zaman yang serba canggih di semua aspek kehidupan sudah menggunakan bantuan teknologi. Seperti contoh dalam hal produksi barang di dalam industri yang hampir semua sektor sudah memakai bantuan teknologi. Untuk memperhitungkan pergerakan dari robot SCARA dibutuhkan perhitungan kinematika pada robot SCARA. Pemodelan kinematika untuk robot SCARA memberikan visualisasi fisik robot dalam model matematika. Penelitian ini bertujuan untuk menguji dan membuktikan teorema pemodelan kinematika maju (forward kinematics) dan kinematika terbalik (inverse kinematics) dalam simulasi serta pengujian lifting dan pengujian aktual langsung dengan robot SCARA. Simulasi kinematika pergerakan robot SCARA menggunakan perangkat lunak MATLAB. Penelitian terdahulu telah dirancang robot SCARA menggunakan konfigurasi revolute-translational-revolute dengan tidak menggunakan simulasi. Hasil dari pengujian kinematika maju menunjukkan bahwa rata-rata error pada nilai aktual pengukuran  dan , dengan nilai paling tinggi pada selisih  pada setiap pengukuran sudut. Serta hasil pengujian gerakan lifting pada SCARA memiliki error maksimal sebesar 2,72% dan error minimal sebesar 0,01%. Dengan rata-rata error yang dihasilkan adalah 0,64% dan pengujian dilakukan sebanyak 10 kali pecobaan dalam setiap parameter.

 

ABSTRACT

In today's advanced era, technology is integrated into all aspects of life. For instance, in the production of goods within industries, nearly all sectors have adopted technological assistance. To calculate the movements of a SCARA robot, kinematic calculations are essential. The kinematic modelling of a SCARA robot provides a physical visualization of the robot in a mathematical model. This study aims to test and validate the theorems of forward kinematics and inverse kinematics modelling through simulations and to examine the lifting mechanism as well as conduct direct practical testing with the SCARA robot. The kinematic simulations of the SCARA robot’s movements are performed using MATLAB software. In previous studies, the SCARA robot was designed using a revolute-translational-revolute configuration without simulation. The results of forward kinematics testing indicate that the average error in actual measurement values is 3.76% for  and 2.98% for , with the highest deviation being 3° for each angle measurement. Additionally, the results of the lifting mechanism testing on the SCARA robot showed a maximum error of 2.72% and a minimum error of 0.01%, with an average error of 0.64% based on 10 trials for each parameter.

References

V. Tinoco, M. F. Silva, and F. Neves, “Benchmarking Controllers for Low-Cost Agricultural SCARA Manipulators,” pp. 1–25, 2025.

Y. Bensafia, A. Idir, and K. Khettab, “Reducing the Delay Time and Tracking Trajectory of the Robot SCARA Using the Fractional PID Controller,” vol. 5, no. 1, 2024.

Y. Wang, C. Zhao, D. Mei, G. Tang, L. Zhang, and D. Zhu, “Structural Design and Position Tracking of the Reconfigurable SCARA Robot by the Pre‐Filter AFE PID Controller,” Appl. Sci., vol. 12, no. 3, 2022, doi: 10.3390/app12031626.

S. H. Tay, W. H. Choong, and H. P. Yoong, “A Review of SCARA Robot Control System,” 4th IEEE Int. Conf. Artif. Intell. Eng. Technol. IICAIET 2022, pp. 1–6, 2022, doi: 10.1109/IICAIET55139.2022.9936755.

R. Bouzid, H. Gritli, and J. Narayan, “ANN Approach for SCARA Robot Inverse Kinematics Solutions with Diverse Datasets and Optimisers,” Appl. Comput. Syst., vol. 29, no. 1, pp. 24–34, 2024, doi: 10.2478/acss-2024-0004.

Z. H. Rashid, R. A. Sarhan, and M. S. Hassan, “Arduino-Based Implementation of Kinematics for a 4 Dof Robot Manipulator Using Artificial Neural Network,” Diagnostyka, vol. 25, no. 1, 2024, doi: 10.29354/diag/184235.

N. Sanjeewa, V. M. Wathudura, and N. S. Kahatapitiya, “Real-Time Coordinate Estimation for SCARA Robots in PCB Repair Using Vision and Laser Triangulation,” pp. 1–19, 2025.

A. Misra, A. Sharma, G. Singh, A. Kumar, and V. Rastogi, “Design and Development ofa Low-Cost CNC Alternative SCARA Robotic Arm,” in Procedia Computer Science, Elsevier B.V., 2020, pp. 2459–2468. doi: 10.1016/j.procs.2020.04.266.

A. Alfiansyah, “The Indonesian Journal of Computer Science,” vol. 13, no. 5, pp. 7198–7217, 2024.

G. Jin, X. Yu, Y. Chen, and J. Li, “SCARA+ System: Bin Picking System of Revolution-Symmetry Objects,” IEEE Trans. Ind. Electron., vol. 71, no. 9, pp. 10976–10986, 2024, doi: 10.1109/TIE.2023.3344841.

M. E. Student, “Design and Fabrication of SCARA for Image Processing in Industry,” pp. 1–10, 2024, doi: 10.55041/IJSREM37833.

S. Suroso, S. Supriyadi, T. Dermawan, and A. Abimanyu, “Desain Sistem Mekanik Robot SCARA untuk Internet Nuclear Instrumentation Laboratory,” J. Pengawas. Tenaga Nukl., vol. 3, no. 2, pp. 7–13, 2023, doi: 10.53862/jupeten.v3i2.002.

C. Urrea, P. Sari, and J. Kern, “Hybrid System for Fault Tolerance in Selective Compliance Assembly Robot Arm: Integration of Differential Gears and Coordination Algorithms,” Technologies, vol. 13, no. 2, 2025, doi: 10.3390/technologies13020047.

A. Talli and D. Marebal, “End-Effector Position Analysis of SCARA Robot by Using MATLAB,” Lect. Notes Electr. Eng., vol. 750, pp. 25–33, 2021, doi: 10.1007/978-981-16-0336-5_3.

Downloads

Published

2025-10-28

How to Cite

[1]
R. O. Sanjaya, N. F. Satria, and H. S. Maulana, “Pemodelan dan simulasi kinematika robot SCARA 3 derajat kebebasan menggunakan MATLAB”, eltek, vol. 23, no. 2, pp. 53–61, Oct. 2025.